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Preface

The Computer Vision Winter Workshop (CVWW) is an annual international meeting fostered by computer vision
research groups from Ljubljana, Prague, Vienna, and Graz. The workshop aims to encourage interaction and exchange
of ideas among researchers and PhD students. The focus of the workshop spans a wide variety of computer vision
and pattern recognition topics, such as image analysis, 3D vision, biometrics, human-computer interaction, vision for
robotics, machine learning, and applied computer vision and pattern recognition.

CVWW2024 was organized by the Slovenian Pattern Recognition Society (SPRS), and held in Terme Olimia,
Slovenia, from February 14th to February 16th, 2024. We received a total of 10 contributed paper submissions from
multiple countries and institutions. The paper selection was coordinated by the Program Chairs and included a
rigorous double-blind review process. The international Program Committee consisted of 38 computer vision experts,
who conducted the reviews. Each submission was examined by at least three experts, who were asked to comment on
the strengths and weaknesses of the papers and justify their recommendation for accepting or rejecting a submission.
The Program Chairs used the reviewers’ comments to render the final decision on each paper. As a result of this review
process, 8 original contributed papers were accepted for publication. These were presented at the workshop as oral or
poster presentations. Complementing this, we were privileged to host 27 invited presentations from both experienced
researchers and researchers in the early stages of their professional careers. These presentation were selected by the
Program Chairs in consultation with the Program Committee. The workshop featured a keynote by Prof. Mohamed
Daoudi, a Full Professor at IMT Nord Europe and Head of the Image Group at CRIStAL Laboratory.

The Workshop Chairs would like to thank the Steering Comittee for their advices, directions and discussions. We
also thank the Program Committee for their high-quality and detailed comments, which served as a valuable source of
feedback for all authors. Their time and effort made CVWW2024 possible. We thank Prof. Mohamed Daudi for taking
time from his busy schedule to deliver the keynote. We also extend our thanks to the Slovenian Pattern Recognition
Society, through which the workshop was organized, and we would like to acknowledge and thank our supporters from
the Faculty of Electrical Engineering and the Faculty of Computer and Information Science, University of Ljubljana
for their contributions. We would also like to thank our sponsor - the SMASH MSCA postdoctoral program. Finnaly,
we wish to thank all authors, presenters, and attendees for making the 27th iteration of the Computer Vision Winter
Workshop a success!

Official sponsor

Hosts

LMILMI
Laboratory for Machine Intelligence
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This talk will summarize various aspects of 3D human face and body motion generation. I will first present
our recent results on 3D and 4D face synthesis. We propose a new model that generates transitions between different
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Tamás Tófalvi, Eötvös Loránd University
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27th Computer Vision Winter Workshop
Terme Olimia, Slovenia, February 14–16, 2024

Pose and Facial Expression Transfer by using StyleGAN

Petr Jahoda, Jan Cech
Faculty of Electrical Engineering,

Czech Technical University in Prague

Abstract. We propose a method to transfer pose and
expression between face images. Given a source and
target face portrait, the model produces an output
image in which the pose and expression of the source
face image are transferred onto the target identity.
The architecture consists of two encoders and a map-
ping network that projects the two inputs into the la-
tent space of StyleGAN2, which finally generates the
output. The training is self-supervised from video se-
quences of many individuals. Manual labeling is not
required. Our model enables the synthesis of ran-
dom identities with controllable pose and expression.
Close-to-real-time performance is achieved.

1. Introduction

Animating facial portraits in a realistic and con-
trollable way has numerous applications in image
editing and interactive systems. For instance, a pho-
torealistic animation of an on-screen character per-
forming various human poses and expressions driven
by a video of another actor can enhance the user
experience in games or virtual reality applications.
Achieving this goal is challenging, as it requires rep-
resenting the face (e.g. modeling in 3D) in order to
control it and developing a method to map the desired
form of control back onto the face representation.

With the advent of generative models, it has be-
come increasingly easier to generate high-resolution
human faces that are virtually indistinguishable from
real images. StyleGAN2 [14] achieves the state-of-
the-art level of image generation with high quality
and diversity among GANs [11]. Although extensive
research has been conducted on editing images in the
latent space of StyleGANs, most studies have primar-
ily explored linear editing approaches. StyleGAN is
popular for latent space manipulation using learned
semantic directions, e.g. making a person smile, ag-
ing, change of gender or pose. However, the explo-

Source Target Generated

Figure 1. Results of our method. Pose and expression
from the source image is transferred onto the identity of
the target image. The method generalizes to paintings, de-
spite being trained on videos of real people.

ration of non-linear editing methods and example-
based control of the synthesis remains relatively un-
explored.

This work presents a method that synthesizes a
new image of an individual by taking a source (driv-
ing) image and a target (identity) image as input, in-
corporating the pose and expression of the person in
the source image into the generated output from the
target image, as shown in Fig. 1.

The main idea of our method is to encode both im-
ages into pose/expression and identity embeddings.
The embeddings are then mapped into the latent
space of the pre-trained StyleGAN2 [14] decoder that
generates the final output. The model is trained from
a dataset of short video sequences each capturing a
single identity. The training is self-supervised and

8



does not require labeled data. We rely on neural
rendering in a one-shot setting without using a 3D
graphics model of the human face.

By using pre-trained components of our model,
we avoid the complicated training of a generative
model. Our results confirm high flexibility of the
StyleGAN2 model, which produces various poses
and facial expressions, and that the output can be
efficiently controlled by another face of a different
identity.

Our main contributions are: (1) Method for pose
and expression transfer with close to real-time infer-
ence. (2) A Generative model that allows the syn-
thesizing of random identities with controllable pose
and expression.

2. Related Work

Before deep learning methods, the problem of
expression transfer was often approached using
parametric models. The 3D Morphable Model
(3DMM) [5] was used in e.g., [26, 27].

More recently deep models have become promi-
nent. For instance, X2Face [33] demonstrates that
an encoder-decoder architecture with a large collec-
tion of video data can be trained to synthesize hu-
man faces conditioned by a source frame without any
parametric representation of the face or supervision.
Furthermore, the paper shows that the expression can
be driven not only by the source frame but also by au-
dio to some degree of accuracy. Similarly, [36] em-
ploys a GAN architecture with an additional embed-
ding network that maps facial images with estimated
facial landmarks into an embedding that controls the
generator. This allows for conditioning the generated
image only on facial landmarks.

The approach proposed in [32] enables the gen-
eration of a talking-head video from a single input
frame and a sequence of 3D keypoints, learned in
an unsupervised way, that represent the motions in
the video. By utilizing this keypoint representation,
the method can efficiently recreate video conference
calls. Moreover, the method allows for the extrac-
tion of 3D keypoints from a different video, enabling
cross-identity motion transfer.

Recently, Megaportraits [9] have achieved an im-
pressive level of cross-reenactment quality in one
shot. Their method utilizes an appearance encoder,
which encodes the source image into a 4D volumet-
ric tensor and a global latent vector, and a motion
encoder, which extracts motion features from both of

the input images. These features together with the
global latent vector predict two 3D warpings. The
first warping removes the source motion from the
volumetric features, and the second one imposes the
target motion. The features are processed by a 3D
generator network and together with the target mo-
tion are input into a 2D convolutional generator that
outputs the final image. Their architecture is com-
plex and is made up of many custom modules that
are not easily reproducible. Our model is much sim-
pler since it is composed of well-understood open-
source publicly available models. We rely on pre-
trained StyleGAN2 [14] to generate the final output
and pre-trained ReStyle image encoder [4] to project
real input images into the latent space.

Regarding image editing in the latent space of
GANs, paper [19] pointed out the arithmetic prop-
erties of the generator’s latent space. Since then, re-
searchers have extensively studied the editing possi-
bilities that can be done in this domain. Specifically
for StyleGAN, many works have been published re-
garding latent space exploration [12, 23, 3, 2, 18].
InterFaceGAN [23] shows that linear semantic di-
rections can be easily found in a supervised manner.
However, the latent directions are heavily entangled,
meaning that one learned latent direction will likely
influence other facial attributes as well. For exam-
ple, given a learned latent direction of a pose change,
when applied, the person might change expression,
hairstyle, or even identity. However, manipulating
real input images requires mapping them to the gen-
erator’s latent space.

The process of finding a latent code that can gen-
erate a given image is referred to as the image in-
version problem [7, 38, 30]. There are mainly two
approaches to image inversion. Either through di-
rect optimization of the latent code to produce the
specified image [2, 1, 21, 39] or through training an
encoder on a large collection of images [20, 4, 28].
Typically, direct optimization gives better results, but
encoders are much faster. In addition, the encoders
show a smoother behavior, producing more coherent
results on similar inputs [29].

Another reason why we chose to use an encoder
for the image inversion is that we require many train-
ing images to be inverted and direct optimization of
each training sample would not be computationally
feasible. We chose ReStyle [4], which uses an itera-
tive encoder to refine the initial estimate of the latent
code. This approach is a suitable fit for our purpose,

9



as it leverages smoother behavior over similar inputs
from encoders as well as better reconstruction quality
from iterative optimization. Currently, the encoders
supported in ReStyle are pSp (pixel2style2pixel) [20]
and e4e (encoder4editing) [28]. Although both en-
coders embed images into the extended latent space
W+, Tov et al. [28] argue that by designing an en-
coder that predicts codes in W+ which reside close to
W they can better balance the distortion-editability
trade-off. However, we chose to use ReStyle with a
pSp encoder in our network as the baseline method
with the e4e encoder had trouble preserving the tar-
get identity.

An approach similar in spirit to ours, in the sense
of using StyleGAN for expression transfer, is taken
by Yang et al. [35]. Nevertheless, they do not trans-
fer the pose, but the expression only. Moreover, their
method relies on optimization, which is much slower.
They report running times for a single image in min-
utes, while our method runs in fractions of seconds
and is thus more practical for generating videos.

3. Method

Our framework takes two face images as input, a
source (driving) face image, and a target (identity)
face image. The network produces an output image
where the pose and expression from the source face
image are transferred onto the target identity.

3.1. Architecture

Fig. 2 depicts the proposed architecture. The net-
work consists of a motion (pose+expression) encoder
Em, an identity encoder Ei, a mapping network M ,
and a generator network G. The encoder Ei embeds
the identity of the target face image. The encoder
Em embeds motion, the pose and expression of the
source face image. The mapping network then mixes
the two embeddings and projects the output into the
latent space of the pre-trained StyleGAN2 genera-
tor. This approach offers the advantage of generating
high-quality images through StyleGAN while avoid-
ing the intricate GAN training process. The network
architecture is inspired by [25].

Specifically, a source image s and a target image t
are aligned and resized to 256× 256 pixels and then
fed into their corresponding encoders, where they
are embedded in the extended latent space W+ of
18 × 512 dimensions. Embeddings zs for pose and
expression of source image s and zt for the identity of
target image t are then concatenated and transformed

through the mapping network into a latent code z
∈ W+ that is then used as an input for the generator
that finally produces an output image g. Formally,

gs→t = G

(
M
(
Em(s) ⊕ Ei(t)

))
,

where symbol ⊕ denotes concatenation.
ResNet-IR SE 50 has been shown to embed vari-

ous entities into the latent space of StyleGAN2 such
as cartoons [20], hair [25] and much more. There-
fore, we utilize this network as encoder Em. For the
encoder Ei, we use a pre-trained ReStyle with the
pSp configuration. For the mapping network M , we
employ a single fully connected linear layer. For the
generator, we use the pre-trained StyleGAN2 which
produces high-resolution images of 1024× 1024 px.

3.2. Training

We employ self-supervised training to optimize
the parameters of the encoder Em and the mapping
network M , while keeping the parameters of the gen-
erator G and the encoder Ei fixed. The training
is performed on an unlabeled dataset of short video
clips, each containing a single person.

During each iteration of the training procedure, we
randomly sample two pairs of frames (sA, tA) and
(sB , tB) from two video clips of identities A and B,
respectively. We then generate two images gsA→tA

where the source and target frames are of identity A
and gsA→tB where the source is of identity A and the
target is of identity B. We employ the following loss
functions:

Pixel-wise loss. It is Euclidean distance between the
source and generated image intensities

L2 = ∥sA − gsA→tA∥2. (1)

where sA is the source frame of identity A and
gsA→tA is a generated image using both inputs from
identity A.

Perceptual loss. LPIPS (Learned Perceptual Image
Patch Similarity) [37] was shown to correlate with
human perception of image similarity. In praticular,

LLPIPS = 1− ⟨P (sA), P (gsA→tA)⟩, (2)

where P is a perceptual feature extractor
(AlexNet) [16] that outputs unit-length normal-
ized features and ⟨., .⟩ denotes dot product.
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StyleGAN2Map
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Encoder

Identity
Encoder

Pose and
Expression

transfer

Figure 2. The architecture of the proposed model. The Motion encoder and Mapping network weights are trained, while
the Identity encoder and StyleGAN2 weights stay fixed during training.

Identity loss. To ensure that the generated image
preserves the identity of the target image, we employ
the pre-trained facial recognition model ArcFace [8].
We calculate it in a similar fashion to the previous
loss:

LID = 1− ⟨D(tB), D(gsA→tB )⟩, (3)

where D produces unit-length normalized embed-
dings of respective frames.

CosFace loss. Finally, we implement the CosFace
loss [31] that we use in a similar way to Megapor-
traits [9]. The purpose of the loss is to make the
embeddings of coherent pose and expressions sim-
ilar, while maintaining the embeddings of indepen-
dent pose and expressions uncorrelated. For this
loss, only motion descriptors embedded by Em, are
necessary. We calculate motion descriptors zA =
Em(sA), zB = Em(sB) of the inputs, and of the
outputs fed to the encoder zA→A = Em(gsA→tA),
zA→B = Em(gsA→tB ). We then arrange them into
positive pairs P that should align with each other:
P = (zA→A, zA), (zA→B, zA), and negative pairs:
N = (zA→A, zB), (zA→B, zB). These pairs are then
used to calculate the following cosine distance:

d(zi, zj) = a · (⟨zi, zj⟩ − b), (4)

where both a and b are hyperparameters. Finally,

Lcos=−
∑

(zk,zl)∈P
log

exp{d(zk, zl)}
exp{d(zk, zl)}+

∑
(zi,zj)∈N

exp{d(zi, zj)}
.

(5)

Furthermore, we used cropped versions of the L2

loss and the LLPIPS losses. The crop is the central

area of 188 × 188 pixels of the original 256 × 256
aligned image. The losses L2 crop and LLPIPS crop

are used exactly as their aforementioned counter-
parts. The cropped losses turned out to be important.
Otherwise, we observed the model struggled to trans-
fer the expression precisely, probably being disturbed
by the complex texture of hair and background.

The total loss which is used to train the network is
the weighted sum of the individual losses

L = wL2L2 + wLPIPSLLPIPS + wIDLID

+wcosLcos + wL2 cropL2 crop

+wLPIPS cropLLPIPS crop.

(6)

3.3. Dataset

For our goal, we need a dataset consisting of nu-
merous unique identities and a wide range of images
with varying poses and facial expressions for each
identity. To meet this requirement, it was necessary
to use video data despite a potential trade-off in im-
age quality.

We decided to use the VoxCeleb2 dataset [6]
which was collected originally for speaker recogni-
tion and verification. It has since been used for talk-
ing head synthesis, speech separation, and face gen-
eration. It contains over a million utterances from
6 112 identities, providing us with a vast array of
subjects to work with. The dataset is primarily com-
posed of celebrity interview videos, offering a broad
spectrum of poses and expressions to utilize. The
videos are categorized by identity and trimmed into
shorter utterances that range from 5 to 15 seconds
in duration. They have also already undergone pre-
processing that includes cropping the frames to the
bounding boxes around each speaker’s face. On

11



top of that, we use the official preprocessing script
provided by StyleGAN to normalize the images to
224× 224 pixels [13].

As the number of videos per individual differs, we
balanced it out by only using a maximum number of
videos per person. We extracted 10 frames at half-
second intervals from each video. Subsequently, we
eliminate images with extreme poses that would be
difficult to generate with StyleGAN. The final train-
ing set contains around 6k different identities, each
with around 10 images from 5 different video clips,
resulting in a little under 300k images. The dataset
was split into disjoint training-validation-test sets 80-
10-10 percent, respectively. No identity appears in
any of the splits simultaneously.

3.4. Implementation details

The model was trained for about a million steps
with a batch size of 8. The best model checkpoint
was selected based on the error statistics measuring
the expression transfer fidelity and identity preserva-
tion, see Sec. 4.3.

We used the ranger optimizer [34], which com-
bines the Rectified Adam algorithm and Look Ahead.
We set the learning rate to 1 · 10−5. For our model
with the best performance, we used the following hy-
perparameters for the losses: wL2 = 0, wLPIPS =
0.05, wID = 0.3, wcos = 0, wL2 crop = 2,
wLPIPS crop = 0.3. We set parameters a = 5 and
b = 0.2 in the CosFace loss.

4. Experiments

4.1. Comparison of methods

Baseline method. To the best of our knowledge,
we are not aware of any publicly available imple-
mentation of our problem. Therefore, we compare
the proposed method with a linear StyleGAN latent
space manipulation as the baseline method.

Given two frames A0 and A1 (sampled from the
same video) where the pose and expression of the
person differ, the edit vector is represented by the
difference between the latent codes corresponding to
the inverted frames. The pose and expression can
then be imposed on a different person in image B by
adding the edit vector to the latent code of image B.
Formally,

zA1→B = zB + α · (zA1 − zA0), (7)

where zB is the latent code of the target person, zA0

is the latent code of the person A with the initial pose

and expression and zA1 is the latent code of the same
person with a different pose and expression. Scalar α
represents the magnitude of the edit and the resulting
latent code zA1→B fed into StyleGAN generates the
output, ideally a person B with the pose and expres-
sion of A1. In our case, we always set α to one, to
get the same expression and pose.

However, this approach requires the initial pose
and facial expression in frame A0 to match the pose
and expression of the person in frame B. This is
a very strict requirement, as there will probably be
no frame in a video where the pose and expression
match perfectly.

Instead of searching for two frames that match
pose and expression the best, we utilize an arithmetic
property of the latent space. We flip each frame in a
video by the vertical axis and invert them along with
their non-flipped counterparts. Then we calculate the
mean latent code for all the frames. This results in a
frontal pose with an average expression across the
video, typically a neutral expression. We do this
for both videos, which provides us with the same
pose and a similar expression for the initial frames.
We then used the aforementioned method to transfer
pose and expression from one person to another. The
downside of this method is that it does not work with
single images, but requires a short video of each in-
dividual. Moreover, inverting all the frames within
the videos is required, which is computationally de-
manding.

We consider two versions of the baseline method.
Both invert all the images with ReStyle [4], but one
with the pSp encoder configuration [20] and the other
with the e4e configuration [28].

Variants of our method. Besides the default
model presented in Sec. 3 denoted as (Ours), we
tested the other two variants. (Ours-Gen) does not
have the StyleGAN generator fixed, but its weights
are optimized during the training of the entire model.
(Ours-Cos) is the model where the CosFace loss
is engaged during training. CosFace loss has zero
weight and the SyleGAN generator is fixed in the de-
fault model.

4.2. Qualitative evaluation

In Fig. 3 we present several examples of pose and
expression transfer between a variety of identities.
The pairs are challenging since the input frames dif-
fer in ethnicity, gender, and illumination. Another
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Target

Source Identity 1 Identity 2 Identity 3 Identity 4 Identity 5

Figure 3. Pose and expression transfer results. The top row depicts the target (identity) input images, leftmost column
the source (driving) input images. The grid shows the transfer results. The identities are preserved column-wise, and the
poses and expressions are preserved row-wise.

challenge is the accessories that people wear such as
glasses or earrings.

The pose and expression are seen to be transferred
while still preserving the input identity. The model
learned to transfer pose, expression, and eye move-
ment. The network also correctly identifies that if
eyeglasses are present in the identity image, they are
preserved in the output image. Surprisingly, the net-
work is able to model eye movement even behind
glasses. However, the model is not perfect for pre-
serving hair or background.

In Fig. 4, we compare the results of the base-
line method with several variants of our proposed
method. The baseline method does not use the tar-
get image, but rather a frontal representation with an
average expression across the video of the identity,
as explained in Sec. 4.1. The figure shows that the
baseline methods have trouble preserving the iden-
tity of the target person and several visual artifacts
are present. Some expressions are transferred rel-
atively faithfully. However, it can happen that the
average expression in one video is not the same as
in the other, and then the expressions are not trans-

ferred correctly. This can be seen in the second and
last columns of the Fig. 4. Our best model represents
eye movement better than other variants while also
generating more realistic images.

Expression transfer to synthetic faces. Our
method allows for transferring pose and expression
onto a randomly generated identities via StyleGAN.
We sample a random latent code z from the Gaus-
sian distribution, which is then mapped by StyleGAN
mapping network to w ∈ W . To obtain a valid iden-
tity latent code for our network, we first generate an
image using StyleGAN with w and then invert it us-
ing ReStyle. This is due to the fact that ReStyle en-
codes the images into a specific subspace of Style-
GAN’s latent space and our model is trained to oper-
ate in this subspace. Feeding w directly into our map-
ping network M often results in certain artifacts. In
this way, we can efficiently generate images of ran-
dom identities with a specific pose and expressions
given an example.
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Figure 4. Pose and expression transfer comparison. The top two rows represent the input: source and target images. The
next row shows the results. The baseline methods, pSp and e4e inversion. The three variants of our method, Ours-Gen
with optimized generator weights, Ours-Cos with CosFace loss, and Ours as our best model.

4.3. Quantitative evaluation

We evaluate the proposed method on pose and
expression transfer fidelity, as well as on identity
preservation. We then compare the results with the
baseline methods and other variants of our method.
The evaluation is done on the test split of the Vox-
Celeb2 dataset [6] that contains 120 different identi-
ties. Our evaluation focuses on a cross-reenactment
scenario, i.e., the source and target images are from
different identities. In particular, for each video in
the test set, every frame is one by one taken as the
source (driving) image, and a single random frame
of another video is taken as the target image (of a
different identity) and fed into the model to generate
output videos.

For pose transfer evaluation, we use a pre-trained
CNN estimator [22]. The network predicts yaw,
pitch, and roll; however, we consider only yaw and
pitch since all the pre-processed and generated im-
ages have the same roll. The pose error is the mean
absolute error of yaw and pitch between the gener-

ated images and their corresponding source (driving)
images.

For the evaluation of identity preservation, we use
the ArcFace [8]. The ID error is the cosine similarity
between the generated and the target (identity) frame
descriptors.

To the best of our knowledge, there is no straight-
forward method for measuring expression transfer fi-
delity. In theory, the expression independent of iden-
tity and pose should be described by activation of Fa-
cial Action Units (FAU) [10]. However, using a re-
cent state-of-the-art FAU extractor [17] did not yield
meaningful results in our data. The reason is proba-
bly that only strong activations are detected and sub-
tle expression changes are not captured at all. There-
fore, we opted to utilize Facial Landmarks (FL). To
detect Facial Landmarks we utilize the Dlib library
[15] which predicts 68 landmarks on a human face.
We first calculate the aspect ratios of certain facial
features following [24]. Specifically, we calculate
the aspect ratios of both eyes, the mouth, and mea-
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Method Pose(MAE)↓ FL(CORR)↑ ID(CSIM)↑
Base pSp 8.491 0.656 0.671
Base e4e 8.720 0.621 0.563
Ours Gen 8.325 0.556 0.760
Ours Cos 7.968 0.528 0.762

Ours 7.673 0.620 0.801

Table 1. Quantitative comparison of the baseline method
and variants of our method. Pose error, expression fidelity
(measured by facial landmarks), and identity preservation
are evaluated. Symbol ↑ indicates that larger is better and
↓ that smaller is better.

sure the movement of the eyebrows by calculating
the aspect ratio between the eyebrows and the eyes.
Instead of measuring expression fidelity between sin-
gle images, we calculate cross-correlation of aspect
ratios between (source and generated) videos, to be
insensitive to individual facial proportions. In par-
ticular, each aspect ratio in the source and generated
videos is calculated for all the frames of the videos.
This gives us two signals of the same length that
are cross-correlated. Finally, the cross-correlations
of all aspect ratios are averaged, giving us the final
FL statistic.

This is a proxy statistic, since it does not capture
eyeball movements and does not measure well asym-
metric facial expressions, but seems to correlate with
subjective quality of facial expression transfer.

Tab. 1 shows the quantitative comparison of the
baseline method and variants of our method on the
VoxCeleb2 test set. The baseline methods strug-
gle to preserve the identity of the generated person
and generate a correct pose, while they are good
or comparable in expression transfer fidelity. Our
best model achieves ArcFace cosine similarity of 0.8,
which is very good considering that the cosine sim-
ilarity between the original and inverted images via
ReStyle with pSp configuration is 0.83. Therefore,
our method achieves identity preservation close to
the maximum possible with ReStyle encoder.

Our method performs worse with the CosFace loss
function (Ours Cos). While the loss function appears
to improve image illumination, as reported by [9], it
significantly slowed training and hindered expression
and eye movement transfer. The variant with (Ours
Gen) optimized generator weights produces overall
inferior output compared to the default model, where
the generator is fixed. The generated images suffer
from unpleasant artifacts while also having a less re-
alistic color scheme. This is probably a consequence
of overfitting.

Computational demands. The speed of infer-
ence is very important in practical applications.
Our method needs to invert the identity image via
ReStyle, which takes approximately half a second on
a modern GPU. Then it can generate up to 20 images
per second with that identity, given all the images
are already aligned. On the other hand, the baseline
method requires the inversion of all the images from
the source video and target video but then can gen-
erate up to 50 images per second. Given two short
5-sec videos with 24 frames per second, which are
typical for the VoxCeleb2 dataset, our method gener-
ates the entire video in less than 6 secs, whereas the
baseline method would require a little over 2 mins.

5. Conclusions

We presented a method for transferring the pose
and expression of a source face image to a target
face image while preserving the identity of the tar-
get face. The proposed method is self-supervised and
does not require labeled data. We reviewed the exist-
ing methods and proposed a new one that is based on
the StyleGAN generator. We extensively evaluated
our method on pose and expression transfer fidelity
as well as on identity preservation. We compare our
method to the baseline that utilizes the arithmetic
property of StyleGANs latent space. We showed
that our model transfers pose, expression, and even
eye movement under challenging conditions such as
different ethnicity, gender, pose, or illumination be-
tween the source and target images. Our method can
be used to generate images of random identities with
controllable pose and facial expressions by coupling
our model with the StyleGAN generator. The infer-
ence runs in close to real-time; thus, it is practically
usable to generate videos having a driving video and
a single still image of a target face.

The limitation is that certain expressions are not
transferred faithfully. For instance, problematic are
fully closed eyes, which is probably due to the diffi-
culty of StyleGAN in producing such images. Face
images with eyes completely closed were probably
not often seen when StyleGAN was trained. The
remedy could be a fine-tuning of the generator on
problematic images and a certain regularization of
the loss function.

We will make the code and the trained model pub-
licly available.
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Abstract. Optical flow is a useful input for various
applications, including 3D reconstruction, pose es-
timation, tracking, and structure-from-motion. De-
spite its utility, the problem of dense long-term track-
ing, especially over wide baselines, has not been
extensively explored. This paper extends the con-
cept of combining multiple optical flows over log-
arithmically spaced intervals as proposed by MFT.
We demonstrate the compatibility of MFT with two
dense matchers, DKM and RoMa. Their incorpora-
tion into the MFT framework optical flow networks
yields results that surpass their individual perfor-
mance. Moreover, we present simple yet effective en-
sembling strategies that prove to be competitive with
more sophisticated, non-causal methods in terms of
position prediction accuracy, highlighting the poten-
tial of MFT in long-term tracking applications.

1. Introduction

Obtaining point-to-point correspondences is a
classical task in computer vision, useful for a wide
range of applications including tracking, structure-
from-motion, and localization. Despite the extensive
research in wide baseline stereo methods, including
those with a time baseline, the domain of dense point
correspondences in videos has not been explored un-
til recently [38, 53]. The emergence of the TAP-Vid
dataset [11] has further fueled interest in long-term
point-tracking methods.

Point-trackers usually [12, 27, 45, 11] track sparse
sets of points. However, dense correspondences are
useful in various applications, such as video editing,
object tracking, and 3D reconstruction. While optical
flow techniques provide dense correspondences, they
are typically limited to pairs of consecutive frames.

Long-term dense tracking has been recently ad-
dressed by Neoral et al. [38] MFT tracker, which

computes optical flow not only for consecutive
frames but also for pairs of more temporally distant
frames, including flow computation between the ref-
erence and every other frame of the video. At ev-
ery frame, optical flow is computed w.r.t. the pre-
vious, first, and a constant number of logarithmically
spaced frames. Such approach is linear in the number
of frames and thus not computationally prohibitive.

In the original MFT[38], all optic flow computa-
tions are based on RAFT [50], which has performed
well in both standard benchmarks [2, 36] and in ap-
plications. However, the RAFT optical flow network
was trained on pairs of consecutive frames, which is
likely sub-optimal for large baselines.

Recently, dense matchers such as DKM [14] and
RoMa [15] have been published. This development
opens the possibility to apply the MFT framework
with different dense matchers, or to use RAFT for
pairs of frames with short temporal, and thus prob-
ably spatial, baseline. The only requirement of the
MFT “meta optic flow algorithm” is that the basis
dense two view optic flow or matcher provides con-
fidence in its predictions.

In this paper, we evaluate the MFT approach with
the DKM and RoMa matchers instead of RAFT. We
show that both of these matchers provide accurate
matches, but inaccurate occlusion predictions. Ad-
dressing the strengths and weaknesses of optical-
flow-based and dense-matching-based methods, we
propose a combined tracker, that outperforms the
original MFT design.

In summary, our contributions are: (1) We show
how to adapt dense matchers DKM and RoMa for
use in the MFT framework, and experimentally eval-
uate their performance. (2) We show that the MFT
algorithm outperforms both direct flow between the
first and the current frame, and the chaining of opti-
cal flows computed on consecutive frames for RAFT,
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DKM, and RoMa. (3) Based on better results of
RoMa over DKM in our experiments, we propose a
dense long-term tracker that combines the strengths
of RAFT-based MFT and RoMa-based MFT.

2. Related Work

Tracking, 3D Reconstruction, and SLAM Object
tracking algorithms [1, 26, 10] traditionally outputted
the track of an object specified in the first frame in
the form of bounding boxes. Later, the focus shifted
towards segmentation-based tracking [29, 41, 34].

Modern model-free trackers based on differen-
tiable rendering [54, 43], that can simultaneously
track and reconstruct any object specified in the first
frame are naturally able to provide point-to-point
correspondences for the tracked object; however, to
the best of our knowledge, they can track a sin-
gle object only or require multi-camera input [33].
Additionally, recent methods [56, 57, 55], involv-
ing differentiable rendering of neural radiance fields
(NeRFs) [37], show potential in creating deformable
3D models for point tracking. Nonetheless, the
extensive computational demands of these methods
limit their practical applicability in real-world sce-
narios.

The traditional SLAM methods [46] produced
sparse point clouds. Later on, semi-dense [16,
51] SLAM methods appeared. Some SLAM-based
trackers, [17] can densely estimate point positions
in static scenes, and recent advances in differen-
tiable rendering opened the avenue for differentiable-
rendering-based monocular SLAMs [42] but their
application remains constrained to static scenes.

Optical Flow estimation is a classical problem in
computer vision, with the early works [32, 20] re-
lying on the brightness-constancy assumption. With
the advent of deep neural networks, the focus shifted
towards learning-based approaches [13, 49, 23, 50,
21] trained on synthetic data.

Optical flow estimation in state-of-the-art
methods, exemplified by RAFT [50] and Flow-
Former [21], is achieved through the analysis of a
4D correlation cost volume, considering features of
all pixel-pairs. These techniques excel in densely
estimating flow between consecutive frames, yet
they encounter challenges in accurately determining
flow across distant frames, particularly in scenar-
ios with large displacements or significant object
deformation.

Multi-step-flow algorithms [7, 6, 8] address the

limitations of concatenation-based approaches for
long-term dense point tracking. These algorithms
create extended dense point tracks by merging op-
tical flow estimates across variable time steps, ef-
fectively managing temporarily occluded points by
bypassing them until their re-emergence. However,
their dependence on the brightness constancy as-
sumption renders them less effective over distant
frames. Subsequent works in multi-step-flow, such
as the multi-step integration and statistical selection
(MISS) approach by Conze et al. [4, 5], further re-
fine this process. This approach relies on generating
a multitude of candidate motion paths from random
reference frames, with the best path selected through
a global spatial smoothness optimization process.
However, this strategy makes these methods compu-
tationally demanding. Although certain optical flow
techniques [24, 39, 22, 59, 31, 58] address occlusions
and flow uncertainty, most leading optical flow meth-
ods, influenced by standard benchmarks like those in
Butler et al. [3] and Menze et al. [35], do not detect
occlusions. Jiang et al. [25], building on RAFT [50],
has taken a different approach in which they handle
occlusion implicitly by computing hidden motions of
the occluded objects. However, the method still falls
short in the context of tracking dynamic, complex
motions.

We now describe in greater depth three methods
that are most relevant to our paper: RAFT [38],
DKM [14], and RoMa [15]. While the latter two are
in fact dense matchers, we will use the term inter-
changeably with long-ranged optical flow estimation
with occlusion prediction.

MFT extends optical flow into dense long-term tra-
jectories by constructing multiple chains of optical
flows and selecting the most reliable one [38]. The
flow chains consist of optical flow computed both be-
tween consecutive frames, and between more distant
frames, which allows for re-detecting points after oc-
clusions. The intervals between distant frames are
chosen to be logarithmically spaced.

MFT extends the RAFT optical flow method with
two heads, estimating occlusion and uncertainty for
each flow vector. Like the optical flow, the uncer-
tainty and the occlusion are accumulated over each
chain, and the non-occluded flow chain with the least
overall uncertainty is selected as the most reliable
candidate. The long-term tracks of different points
thus chain possibly different sequences of optical
flows. This strategy on one hand takes into account
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that changes in appearance and viewpoint gradually
accumulate over time, which makes it more reli-
able to chain flows on easier-to-match frames rather
than estimating matches directly between the tem-
plate and the current frame. On the other hand, short
chains containing longer jumps with low uncertainty
result in less error accumulation.

DKM proposed by Edstedt et al. [14], a dense point-
matching method, employing a ResNet [19]-based
encoder pre-trained on ImageNet-1K [44] for gen-
erating both fine and coarse features. The coarse
features undergo sparse global matching, modeled
as Gaussian process regression, to determine embed-
ded target coordinates and certainty estimates. Fine
features are refined using CNN refiners, following a
methodology similar to Truong et al. [52] and Shen et
al. [47]. DKM’s match certainty estimation relies on
depth consistency, necessitating 3D supervision. The
process concludes by filtering matches below a cer-
tainty threshold of 0.05 weighted sampling for match
selection. Edstedt et al. [14] released outdoor and in-
door models trained on MegaDepth [30]) and Scan-
Net [9] respectively.

RoMa similarly to DKM, RoMa [15] is a dense
matching method that provides pixel displacement
vectors along with their estimated certainty, building
upon the foundation set by DKM [14]. RoMa differ-
entiates itself by employing a two-pronged approach
for feature extraction: using frozen DINOv2 [40]
for sparse features and a specialized ConvNet with
a VGG19 backbone [48] for finer details. Unique
to RoMa is their transformer-based match decoder,
which matches features through a regression-by-
classification approach, better handling the multi-
modal nature of coarse feature matching. In con-
trast to DKM, RoMa’s pipeline omits the use of
dense depth maps for match certainty supervision,
relying instead on pixel displacements for match su-
pervision. Their model is trained on datasets like
MegaDepth [30] and ScanNet [9], similar to DKM.

Long-Term Point Tracking aiming to track a set of
physical points in a video has emerged significantly
since the release of TAP-Vid [11]. The dataset’s
baseline method TAP-Net [11] computes a cost vol-
ume for each frame, employing a technique akin
to RAFT’s approach [50]. It focuses on tracking
individual query points. PIPs [18] takes this ap-
proach to an extreme by completely trading off spa-
tial awareness about other points for temporal aware-

ness within fixed-sized temporal windows, making
it unable to re-detect the target after longer occlu-
sions. TAPIR [12] combines TAP-Net’s track ini-
tialization with PIPs’ refinement while removing the
PIPs’ temporal chunking, using a time-wise convo-
lution instead. CoTracker [27] models the temporal
correlation of different points via a sliding-window
transformer, modeling multiple tracks’ interactions.
While these methods are designed for sparse track-
ing, they can provide dense tracks by querying all
points in the first frame.

Notably, differentiable rendering has been lever-
aged in recent approaches, with OmniMotion repre-
senting 3D points’ motion implicitly using learned
bijections [53] enabling it to provide dense tracks.
Alternative methods like [33] which models the
scene as temporally-parametrized Gaussians[28].
However, these methods have their limitations, such
as OmniMotion’s quadratic complexity and the
multi-camera requirement of [33].

3. Method

For a stream {I1, ..., IN} of N video frames de-
fined on a common image domain Ω, we denote
the optical flow between frames i and j as F (i, j).
Moreover, we use σ(i, j) ∈ RΩ

+ to denote the esti-
mated flow variance, and ρ(i, j) ∈ [0, 1]Ω to repre-
sent the estimated certainty of F (i, j). Finally, oc-
clusion score o(i, j) ∈ [0, 1]Ω denotes the estimated
probability of pixels appearing in frame i being oc-
cluded in frame j. To simplify notation, although
F (i, j), ρ(i, j), and σ(i, j) are 2D or 3D tensors, we will
use these symbols to denote their values at a specific
point p = (x, y) in the image. Moreover, for every
point pi in frame i, its predicted position pj in frame
j relates to the optical flow F (i, j) as follows:

pj = pi + F (i, j)(pi). (1)

Let us denote by ϕRAFT, ϕDKM, ϕRoMa, ϕMFT the
functions computed by RAFT, DKM, RoMa, and
MFT respectively. By RAFT we mean the MFT’s
adaptation of RAFT with additional uncertainty and
occlusion heads [38]. The output vectors of these
methods are as follows:

ϕRAFT = (F (i, j), σ(i, j), ρ(i, j)) (2)

ϕW = (F (i, j), ρ(i, j)) (3)

ϕMFT = (F (i, j), σ(i, j), o(i, j)), (4)

where W is one of the wide-baseline methods, either
DKM or RoMa.
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3.1. MFT Flow Chaining

MFT [38] achieves long-term optical flow esti-
mation by combining multiple optical flows. These
flows are obtained from ϕRAFT over logarithmi-
cally spaced distances. When estimating the flow
F (1, j), MFT utilizes a sequence of intermediate
flows. This sequence, denoted as S , comprises flows
F (j−∆1, j), ..., F (j−∆K , j). Here, ∆i represents log-
arithmic spacing and is defined as 2i−1 for i < K,
with ∆K = j − 1. We limit the number of interme-
diate flows, denoted by K, to a maximum of 5 and
ensure that j −∆K−1 > 1.

Additionally, MFT employs a scoring function
for evaluating the quality of the intermediate flows
chaining for each image point p1 in the reference
frame 1. The scoring function s(j−∆k, j) utilizes
chaining of estimated flow variances and occlusion
scores over an intermediate frame i:

σ(1, i, j)(p1) = σ
(1, i)
MFT (p1) + σ(i, j)(pi), (5)

o(1, i, j)(p1) = max{o(1, i)MFT (p1), o
(i, j)(pi)}, (6)

The point pi is computed using F (1, i)
MFT and the rela-

tion in Equation 1. The scoring function is then de-
fined as s(j−∆k, j)(p1) = −σ(1, j−∆k, j)(p1). If the
chained occlusion score o(1, j−∆k, j)(p1) exceeds an
occlusion threshold θo, we set s(j−∆k, j)(p1) = −∞.
This score is used to select the best flow for every
point p1, that is the flow with the lowest estimated
variance computed on chains that do not contain oc-
cluded points.

MFT computes long-term flow for any point p1 in
the reference frame 1 iteratively via chaining as

F (1, j)
MFT (p1) = F (1, iM )

MFT (p1) + F (iM , j)(piM ), (7)

where iM ∈ {j − ∆k | 1 ≤ k ≤ K} such
that the score s(iM , j)(p1) is maximal. Again, the
point piM is obtained using F (1, iM )

MFT (p1) and Equa-
tion 1. F (iM , j) is the flow obtained from an arbitrary
method that can also estimate its variance σ(iM , j)

and occlusion score o(iM , j). The flow chaining is
visualized in Figure 1.

The estimated variance and occlusion score for
frame j are then obtained from the chain over
frame iM as σ

(1, j)
MFT (p1) = σ(1, iM , j)(p1), respec-

tively o
(1, j)
MFT (p1) = o(1, iM , j)(p1). A pixel observed

in frame i is considered occluded in frame j if its
value o

(i, j)
MFT is above a threshold θo . In practice, we

set different thresholds for different backbone net-
works as we discuss in Subsection 3.2.

...

p1

pj−∆K−1

...

pj−∆1

...

pj

P = {j −∆k| 1 ≤ k ≤ K}
iM = argmaxi∈P s(i, j)(p1)

F(1, j−∆K−1)

MFT

F(1, j−∆1)
MFT

F(j−∆K , j),
s(j−∆K , j)

F(j−∆K−1, j),

s(j−∆K−1, j)

F(j−∆1, j),
s(j−∆1, j)

F(iM , j)

Figure 1: Illustration of the MFT flow chaining as
defined in Equation 7. The optical flows and scoring
functions are evaluated on the points in the outbound
nodes of their respective arcs.

3.2. Integration of DKM and RoMa

As we mentioned in the Introduction, we make the
conjecture that training RAFT for optical flow pre-
diction on consecutive video frames is suboptimal
for wide baselines. We therefore integrate DKM and
RoMa, capable of handling wider baselines. How-
ever, integrating these methods with MFT poses cer-
tain challenges due to their incompatible outputs.

In the first place, neither RoMa nor DKM provides
an occlusion score o, but only an estimate of the flow
prediction certainty ρ. We therefore artificially set
their occlusion scores as o = 1 − ρ. Furthermore,
although σ and ρ both represent the quality of esti-
mated optical flow, they are not directly comparable.
But in order to integrate them into the MFT frame-
work, we need to converse between them.

Through empirical analysis, we established a flow
certainty threshold θρ. When ρ exceeds this thresh-
old, we deem the optical flow reliable, assigning
σ = 0. Conversely, when ρ is below this thresh-
old, σ is set to 1000, correlating higher uncertainties
with increased variances in predicted flow. Addition-
ally, we observed that while oMFT, oDKM, and oRoMa
fundamentally represent the same concept, their re-
spective occlusion thresholds θoRAFT and θoRoMa vary.
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In our experiments in Section 4, we use

θoRAFT = 0.02, θoDKM = θoRoMa = 0.95. (8)

For a visual comparison between the original MFT
and the integration of RoMa into MFT, see Figure 2.

3.3. Ensembling

We observed that, in terms of occlusion predic-
tion, MFT’s modification of RAFT achieves higher
accuracy compared to RoMa. Conversely, RoMa ex-
hibits better performance in optical flow prediction
relative to RAFT. Based on these findings, we de-
veloped an integrated approach that combines the
strengths of both methods. Specifically, our method
utilizes occlusion data from RAFT, while RoMa is
employed for position prediction, with both pro-
cesses executed in parallel within the MFT frame-
work. As detailed in Section 4, our most effec-
tive strategy involves employing RAFT for occlusion
score prediction and RoMa for position prediction,
provided the point is not predicted as occluded; in
cases of occlusion, RAFT’s predictions are preferred.

4. Experiments

In this section, we evaluate our proposed method.
Initially, we compare the MFT framework with di-
rect optical flow prediction and simple optical flow
chaining. Subsequently, we explore RoMa’s optical
flow prediction performance within the MFT frame-
work depending on whether it predicts the point as
occluded or non-occluded, which serves as a founda-
tional finding for our most effective ensembling strat-
egy. The final part of our experimentation serves as
a comparison of different ensembling strategies, jus-
tifying the design of our most effective architecture,
and comparing it to other tracking methods.

Evaluation setup Our experiments were con-
ducted on all 30 tracks of the TAP-Vid-DAVIS
dataset [11] with a resolution of 512×512 using the
first evaluation mode. This approach aligns with the
methodology described in MFT [38]. It is important
to stress that in the dataset, the tracks are annotated
only sparsely with more focus on the foreground ob-
jects rather than the static background.

Evaluation metrics In assessing the performance
of our approach, we employ three key metrics as de-
fined by the TAP-Vid benchmark. The Occlusion

Accuracy (OA) evaluates the accuracy of classifying
the points as occluded. We measure the quality of
the predicted positions, using average displacement
error, denoted as <δxavg. This metric calculates the
fraction of visible points with a positional error be-
low specific thresholds, averaged over thresholds of
1, 2, 4, 8, and 16 pixels. These accuracies for individ-
ual thresholds are denoted as < i with i representing
the threshold. Additionally, the Average Jaccard (AJ)
as defined in [11] index is used to collectively assess
both occlusion and position accuracy.

4.1. MFT Chaining

A key aspect of our analysis involves contrasting
the performance of RAFT, DKM, and RoMa within
the MFT framework against direct optical flow pre-
diction with the first frame serving as a reference,
and chaining of the optical flows computed on con-
secutive video frames. The results presented in Ta-
ble 1 clearly show that for each base method (RAFT,
DKM, RoMa), the MFT strategy consistently outper-
forms the other strategies in all metrics by a large
margin. These results underscore the effectiveness of
MFT in handling complex motion trajectories over
extended periods, surpassing the limitations of di-
rect prediction and simple chaining methods. A key
observation exemplified in Figure 2 is that RoMa is
substantially less prone to predict mismatches in the
background than RAFT.

The results in Table 1 also show that RoMa within
the MFT paradigm achieves arguably the best results
in position prediction, while RAFT outperforms all
other methods in the occlusion classification accu-
racy. This finding serves as a foundation for our en-
semble strategies in Subsec. 3.3. Due to the consis-
tently better performance of RoMa over DKM in the
evaluation benchmark in all, average Jaccard, aver-
age displacement error, and occlusion accuracy we
from now on focus our experiments on RoMa even if
DKM runs slightly faster.

4.2. RoMa Visibility

While RoMa demonstrates high accuracy in posi-
tion prediction, its capability in occlusion detection is
relatively limited in comparison to RAFT. However,
the quality of occlusion prediction is vital for scoring
the optical flows as described in Subsec. 3.1, and thus
for computing new flows. We hence conjecture that
if we only use the RoMa’s optical flow predictions
that are predicted as not occluded, we can achieve
even better tracking results. The results, as shown
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(a) Reference frame (b) RAFT-based MFT Strategy.

(c) RoMa-based MFT Strategy. (d) DKM-based MFT Strategy.

(e) Direct matching between frames #0 and #140 using
RAFT.

(f) Direct matching between frames #0 and #140 using
RoMa.

(g) Combined RAFT and RoMa strategy. (h) Selective RoMa position prediction.

Figure 2: Visual comparison of selected dense tracking methods: (a) reference frame #0; (b)-(h) predicted
positions of points in frame #140. All blue points are invisible in frame #140; blue points in (b)-(h) thus
indicate false matches. Green points are visible both in frame #0 and frame #140. Red points highlight the
points on the body of the lioness. Different shades are used to identify different points. The sequence is
available at https://cmp.felk.cvut.cz/˜serycjon/MFT/visuals/ugsJtsO9w1A-00.00.
24.457-00.00.29.462_HD.mp4.
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main metrics

base strategy AJ <δxavg OA <1 <2 <4 <8 <16

direct 38.4 50.8 65.6 29.0 44.1 54.6 60.4 65.7
RAFT chain 38.7 55.0 69.5 25.2 43.8 59.4 70.4 76.3

MFT 47.4 67.1 77.7 34.0 57.3 74.3 82.8 86.9
chain 27.3 63.5 48.2 36.4 56.2 69.4 76.0 79.6

DKM direct 34.0 60.7 52.8 37.0 54.5 65.3 70.9 76.0
MFT 47.8 72.0 70.2 43.0 65.8 79.0 84.5 87.8
direct 37.7 63.7 57.6 37.5 55.9 67.8 75.5 81.5

RoMa chain 40.3 63.1 60.7 36.8 55.3 68.1 75.5 79.8
MFT 48.8 72.7 71.7 43.0 65.5 79.2 85.5 90.1

Table 1: TAP-Vid DAVIS evaluation of different optical flow combination strategies. The MFT strategy
outperforms both simple chaining and direct matching for all base optical flow methods on all the metrics.

predicted <δxavg <1 <2 <4 <8 <16

occluded 47.4 18.7 32.7 52.0 62.6 71.1
visible 77.2 46.9 70.9 84.5 89.8 93.7
any 72.7 43.0 65.5 79.2 85.5 90.1

Table 2: TAP-Vid DAVIS evaluation of MFT-
RoMa separated by the occlusion prediction. Us-
ing only the points predicted as not occluded leads to
improved position accuracy on all error thresholds.

in Tab. 2, indicate a marked improvement in tracking
accuracy when measured only on points predicted as
non-occluded.

4.3. Ensembling Strategies

In the concluding part of our experimental analy-
sis, we compare various ensembling strategies within
the MFT framework, building on the insights from
the previous sections. The results, detailed in Ta-
ble 3, demonstrate the effectiveness of the ensemble
strategy.

RAFT-based MFT Strategy For comparison we
show the original MFT strategy, utilizing RAFT for
both position and occlusion predictions. This ap-
proach, while achieving the highest occlusion accu-
racy among all ensembling strategies tested, exhibits
suboptimal performance in position precision.

RoMa-based MFT Strategy Substituting RAFT
entirely with RoMa, we observed an improvement in
position prediction accuracy. However, this modifi-
cation led to a significant decrease in occlusion pre-

diction accuracy, highlighting the trade-offs between
these two aspects.

Combined RAFT and RoMa Strategy Our next
strategy involved a simple combination of RAFT and
RoMa: RAFT for occlusion prediction and RoMa for
position prediction. This hybrid approach resulted
in enhanced performance across all metrics, outper-
forming the aforementioned individual strategies.

Selective RoMa Position Prediction However,
further refinement was achieved by integrating find-
ings from Subsection 4.2. We found that RoMa’s
position predictions are more accurate for points it
identifies as visible. Therefore, we devised a strategy
where MFT-RoMa’s position predictions are used
only if the points are marked as visible; otherwise,
RAFT’s predictions are utilized. This selective strat-
egy led to improvements in both position predic-
tion accuracy and occlusion accuracy. We visually
compare this strategy with other two best-performing
strategies and MFT with RAFT in Figure 3.

Comparison with Point Trackers We observe
that our approach closely rivals or exceeds the per-
formance of established sparse point tracking meth-
ods like CoTracker and TAPIR in the average posi-
tion accuracy while achieving worse performance in
the occlusion prediction accuracy. It is noteworthy
that our method attains these results within a strictly
causal framework, contrasting with CoTracker and
TAPIR, which utilize attention-based temporal re-
finement strategies. Moreover, it is important to
highlight that, unlike our approach, CoTracker and
TAPIR are designed as sparse trackers.
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MFT base main metrics visibility

position occlusion AJ <δxavg OA precision recall
(1) RAFT RAFT 47.4 67.1 77.7 78.0 91.5
(2) RoMa RoMa 48.8 72.7 71.7 74.5 85.3
(3) RoMa RAFT 50.2 72.7 77.7 78.0 91.5
(4) RAFT/RoMa RAFT 51.6 73.4 77.7 78.0 91.5

TAPIR 56.2 70.0 86.5
CoTracker 61.0 75.9 89.4

Table 3: TAP-Vid DAVIS evaluation of combinations of two trackers. We run MFT-RAFT and MFT-RoMa
independently in parallel, using the two outputs for the final position and occlusion prediction. RAFT-based
MFT (1) has good occlusion accuracy (OA), RoMa-based MFT (2) has good position accuracy <δxavg. Using
MFT-RAFT to predict occlusion and MFT-RoMa to predict position (3) achieves better AJ. The best results (4)
are achieved when the position is predicted by MFT-RoMa, but only when it predicts visible (see Tab. 2).

5. Conclusion

We have showcased the benefits of employing the
MFT framework over direct optical flow computa-
tion and optical flow chaining. We have also demon-
strated the flexibility of the MFT paradigm which
can be readily used together with different optical
flow computation methods. Without complex ar-
chitectural modifications and using simple ensemble
strategies, we were able to demonstrate position pre-
diction accuracy on the Tap-Vid dataset competing
with that of state-of-the-art sparse trackers that uti-
lize non-causal tracking refinement.

Limitations and Future Work Our current ap-
proach does not take into account the speed of the
baseline optical flow networks. The main limitation
is the need for two optical flow networks to operate
concurrently within the ensemble strategy. Explor-
ing co-training strategies that enable a single network
to deliver similar performance could be a viable so-
lution. A key task is to bridge the existing gap in
occlusion prediction accuracy between our method
and the state-of-the-art. We also put forward the need
for new datasets featuring dense annotations of point
tracks in both the foreground and background.

Acknowledgments This work was supported by
Toyota Motor Europe and by the Grant Agency
of the Czech Technical University in Prague, grant
No.SGS23/173/OHK3/3T/13.

(a) RAFT-based MFT Strategy

(b) RoMa-based MFT Strategy

(c) Combined RAFT and RoMa Strategy

Figure 3: Images show the first frames of two se-
lected TAP-Vid DAVIS sequences. Dots represent
ground-truth tracking points, with shades of green
showing the improvement in <δxavg achieved by the
Selective RoMa Position Prediction ensemble over
methods (a)-(c), shades of red show the converse.
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P. Pérez. Robust optical flow integration. IEEE
Transactions on Image Processing, 24(1):484–498,
2014. 2

[9] A. Dai, A. X. Chang, M. Savva, M. Halber,
T. Funkhouser, and M. Nießner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In
Proc. Computer Vision and Pattern Recognition
(CVPR), IEEE, 2017. 3

[10] M. Danelljan, G. Bhat, F. S. Khan, and M. Fels-
berg. Atom: Accurate tracking by overlap maxi-
mization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
4660–4669, 2019. 2

[11] C. Doersch, A. Gupta, L. Markeeva, A. R. Conti-
nente, L. Smaira, Y. Aytar, J. Carreira, A. Zisserman,
and Y. Yang. TAP-Vid: A benchmark for tracking
any point in a video. Advances in Neural Informa-
tion Processing Systems, 2022. 1, 3, 5

[12] C. Doersch, Y. Yang, M. Vecerik, D. Gokay,
A. Gupta, Y. Aytar, J. Carreira, and A. Zisserman.
TAPIR: Tracking any point with per-frame initializa-
tion and temporal refinement. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision (ICCV), pages 10061–10072, October 2023.
1, 3

[13] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser,
C. Hazirbas, V. Golkov, P. Van Der Smagt, D. Cre-
mers, and T. Brox. FlowNet: Learning optical flow
with convolutional networks. In Proceedings of the
IEEE international conference on computer vision,
pages 2758–2766, 2015. 2

[14] J. Edstedt, I. Athanasiadis, M. Wadenbäck, and
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Abstract. The goal of this paper is to assess the im-
pact of noise in 3D camera-captured data by mod-
eling the noise of the imaging process and apply-
ing it on synthetic training data. We compiled a
dataset of specifically constructed scenes to obtain
a noise model. We specifically model lateral noise,
affecting the position of captured points in the image
plane, and axial noise, affecting the position along
the axis perpendicular to the image plane. The esti-
mated models can be used to emulate noise in syn-
thetic training data. The added benefit of adding ar-
tificial noise is evaluated in an experiment with ren-
dered data for object segmentation. We train a se-
ries of neural networks with varying levels of noise
in the data and measure their ability to generalize on
real data. The results show that using too little or
too much noise can hurt the networks’ performance
indicating that obtaining a model of noise from real
scanners is beneficial for synthetic data generation.

1. Introduction

In the past, 3D cameras were rare and expensive.
Nowadays, a plethora of 3D cameras of various qual-
ity and price are commercially available. As is the
case with any camera, range data captured by these
devices suffer from the presence of noise.

The intersection of machine learning and com-
puter vision has emerged as a dynamic field with di-
verse applications. Notably, the synthesis of these
domains has become increasingly prominent. Ma-
chine learning requires training data, manual creation
of which is not only time-consuming but also expen-
sive. The advent of computer graphics has facili-
tated the cost-effective generation of synthetic data.
Nevertheless, synthetic data lacks the inherent noise
present in real 3D camera-captured data, leading to a
domain gap. To bridge this gap, the process of syn-

thetic data creation may involve the intentional ad-
dition of artificial noise. Noise is, however, a com-
plex topic. Countless factors influence its behaviour,
from the technology employed by the device, design
and quality, through environmental variables, such as
ambient light and temperature, to properties of the
scene. The presence of some noise can be avoided,
and in some cases, the noise can be modelled.

Noise has been the topic of numerous studies [1,
5, 9, 17, 18]. Most of them, however, focus on in-
vestigation of one specific device or principle. Some
works focus on theoretical models of noise. These
models serve as a guide for investigation of the noise
of specific devices, as the parameters of the devices
needed for the employment of the models are usually
not publicly available and are subject to trade secrets.

Axial and lateral noise of 3D cameras were chosen
for a comprehensive investigation, as the theoreti-
cal models describing their behaviour rely heavily on
knowledge of publicly undisclosed parameters. We
have collected a dataset of several thousands scans
from three different devices to fit probabilistic mod-
els of noise with respect to the distance of the imaged
objects and angles of their surface.

We also performed an experiment with a segmen-
tation neural network trained on synthetic data. We
varied the amount of noise added to the generated
data. Evaluation on real scans shows that using too
little or too much noise can hurt the network’s perfor-
mance. The knowledge of noise parameters of real
devices can thus be beneficial when employing syn-
thetic data for training deep neural networks.

2. Related Work

Various approaches have been explored to en-
hance the accuracy and efficiency of 3D scanning
technologies, with a particular focus on training
datasets that fuel machine learning models behind
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the processing pipelines. Understanding the artifacts
inherent in scanning technologies is crucial for gen-
erating training data that accurately reflects the real
world’s variance. Different 3D scanning methods,
such as structured light triangulation and time-of-
flight measurements, introduce unique artifacts that
can impact data quality. Some common artifacts in-
clude noise, distortions, and systematic errors.

2.1. Structured Light Scanning

Structured Light (SL) triangulation is based on the
principles of two-view geometry. One camera is re-
placed by a light source that projects a sequence of
patterns onto the scene. The patterns projected get
deformed by the geometric shapes of the objects in
the scene. A camera situated at a fixed distance from
the projector then captures the scene with the pro-
jected pattern [21]. By analysing the distortion of the
pattern, information about position of the objects in
the scene can be determined.

Various patterns have been proposed [20]. For
example, the Kinect v1 camera uses a fixed dot
pattern [10]. Photoneo’s MotionCam-3D camera
utilises parallel structured light technology which en-
ables the device to capture the scene depth at high
resolution and frame-rate at the same time [16].

2.2. Time-of-Flight Scanning

Time-of-Flight (ToF) measurement technology is
based on the principle of calculating the distance of
an object in the scene by measuring the time it takes
for an emitted signal to travel to the object and back.
The distance is calculated from measurements of
phase difference [13]. The exact type of waves em-
ployed varies based on the application. RADAR and
LIDAR include ToF measurements [21]. The most
common approach in ToF cameras is the continuous-
wave intensity modulation IR LIDAR [12]. The dis-
tance is calculated from the observed phase delay of
the amplitude envelope of the reflected light [22].

The range and accuracy of ToF devices are pri-
marily influenced by the wavelength and energy of
the emitted light, necessitating safety precautions, in-
cluding energy capping in human environments [21].
However, such devices often exhibit reduced preci-
sion outdoors due to sunlight interference, as sun-
light has higher power compared to the emitted sig-
nal [13, 22].

2.3. Sources of Noise and Errors in 3D Scanning

Scanning devices in real life are prone to various
sources of noise and errors, related to the environ-
mental conditions and limitations of underlying tech-
nology.

Temporal noise in 3D scanning devices refers to
variations in the captured data over time, introduc-
ing fluctuations or inconsistencies in the measure-
ments. Temporal noise is often correlated between
consecutive scans and can arise from a range of
factors, including electronic instability, sensor char-
acteristics, or environmental conditions [17]. The
amount of temporal noise can also be influenced
by colour and material properties of the observed
objects [9, 22, 24, 25] and the geometry of the
scene [17].

The presence of a different source of similar radia-
tion can interfere with the device’s ability to correctly
calculate the distance of the objects in the scene.
Such interference can be caused by ambient light [8],
radiation from other active imaging devices [2, 3] or
even radiation emitted from the device itself when
the scene contains reflective surfaces [20].

Systematic errors may also arise during 3D scan-
ning. This type of errors result in consistent differ-
ences between the scans and the actual scene geom-
etry. For SL cameras, it is mainly caused by inad-
equate calibration, low resolution, and coarse value
quantisation [14]. In the case of ToF cameras, the
measurement is based on mixing of different opti-
cal signals and approximation of their shapes. The
mentioned approximation is one of the contributions
to the effect referred to as wiggling [20], periodic
change of the systematic error with distance. Both
SL and ToF cameras may also suffer from temper-
ature drift [22, 25]. Systematic error of devices can
be modelled well when precise information about the
scene is known [22].

2.4. Training NNs using Synthetic Data

In the context of machine learning and neural net-
work training, the fusion of synthetic data genera-
tion, domain randomization and data augmentation
can be leveraged as powerful tools to avoid expen-
sive creation of real datasets.

A widely recognized tool for generating synthetic
data is for example NVIDIA replicator1. Synthetic
data can further be enhanced by GANs [7], analyti-

1https://developer.nvidia.com/omniverse/
replicator

30



(a) (b)

Figure 1: (a) Cropped range image of a white pa-
per (blue rectangular area) positioned 1.25 m away
from the camera at a 20° angle captured by Kinect
v1. White pixels represent missing values. Lateral
noise can be seen at the paper boundaries which are
straight in the real scene. (b) Cropped range image
of a planar wall captured by Kinect v2 at 90 cm dis-
tance with notable axial noise.

cal emulation of known imaging errors, artifacts and
noise [15], or domain randomization which intro-
duces variability by altering key factors such as ob-
ject properties, lighting conditions, and camera per-
spectives [23].

3. Estimating 3D Camera Noise Parameters

In this section we describe the process of estimat-
ing the parameters of two types of noise occurring in
real 3D scans and their dependence on the distances
of objects as well as the angle of the imaged surfaces.
In section 4 we perform an experiment showing that
the estimated parameters can be used to improve the
performance of models trained on synthetic data.

3.1. Lateral and Axial Noise

We specifically investigate two types of noise: lat-
eral and axial. These are the two most dominant
types of noise present in real 3D scans.

Lateral noise Lateral noise refers to error in the
reported position in the camera’s xy-plane. Even
though lateral noise affects all measurements, it is
most visible at object boundaries, as illustrated in
Figure 1a. Existing research [18, 17] suggests the
distance of the object and its angle influences the
amount of lateral noise.

Axial noise Axial noise refers to noise orthogonal
to the imaging plane, parallel to the z-axis of the
camera. The lateral noise presents itself by alter-
ing the positions of depth values in the range image,

while the axial noise can be observed in the individ-
ual depth values themselves. An example of axial
noise is presented in Figure 1b.

Multiple factors are known to influence axial
noise, from geometry of the scene to properties of
the material of the surfaces in the scene [17, 18, 22].

For SL cameras, according to pin-hole camera
model and the disparity-depth model, the standard
deviation of axial noise σz increases quadratically
with increasing depth and can be calculated as [17]:

σz =

(
m

fb

)
z2σρ , (1)

where z refers to depth, σρ to the standard deviation
of normalised disparity values, f to the focal length,
b to the length of the baseline, and m to the param-
eter of internal disparity normalisation. In this paper
we estimate the noise levels for both axial and lateral
noise directly from the observed data without relying
on knowledge of the camera intrinsics.

3.2. Custom Dataset

In order to estimate the levels of lateral and axial
noise in various 3D scanning devices we collected a
custom dataset. The dataset consists of scenes with
a large planar surface (white rectangular cardboard)
under various rotations.

We captured the scene using three 3D cameras:

• Kinect v1 utilises IR SL projector combined
with a monochrome CMOS sensor for depth
sensing, supplying range images with 640×480
resolution at 30 fps. Its default depth range is
0.8 m - 4.0 m, 0.4 m - 3.0 m in near mode.

• Kinect v2 employs a ToF camera for depth
sensing. Compared to its predecessor, it has a
wider field of view and offers depth measure-
ments with greater accuracy and wider depth
range, 0.5 m - 4.5 m. The resolution of the range
images is, however, slightly smaller, 512× 424.

• MotionCam-3D camera by Photoneo is based
on SL range sensing. Thanks to parallel struc-
tured light technology [16], the camera is able
to capture dynamic scenes. Overall, the cam-
era offers resolution up to 1680 × 1200. The
MotionCam-3D can run in two different modes,
the static scanner mode where the resolution
and scanning time are higher, and dynamic cam-
era mode where the scanning time and the out-
put resolution are lower.
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(a) stand (b) Kinect v1 and v2 (c) MotionCam-3D

Figure 2: Physical setup for capturing surface at dif-
ferent angles and distances.

(a) Kinect v1 (b) Kinect v2 (c) MotionCam-3D

Figure 3: Range images captured by devices. The
scene contains a white paper at 1 m distance and 30°
angle captured as portrayed in Figure 2.

To mitigate the effects of thermal drift the de-
vices were warmed up by capturing range images of a
blank wall in 1-minute intervals for 60 minutes prior
to collecting the samples in the dataset.

To investigate the influence of surface distance
and angle on noise a set of range images contain-
ing a white planar paper at various positions was
captured. To minimise any distortion of the paper,
heavy-weight card stock was mounted on a rigid
stand, displayed in Figure 2a. The stand is comprised
of two plastic boards mounted to two wooden beams
attached to a wide plastic pipe with a plug. The rub-
ber seal between the pipe and the plug was shaved
to allow smooth rotation while preserving the posi-
tion when idle. The stand was constructed to have
the centre of rotation in the horizontal centre of the
paper, with markings noting the rotation angle.

With a mounted paper, this stand was positioned
at various distances from the cameras and was ro-
tated for the capture of various scenes. For each such
stationary scene 200 range images were captured by
each camera. To minimise the impact of temporal
noise, for each set of range images capturing one
scene, an average range image was computed by av-
eraging captured depth values for individual pixels.
To ensure all the cameras captured the same scene,
the entire process was repeated, as all the cameras
did not reasonably fit into the same space at once.
The setups are portrayed in Figure 2, while examples
of captured range images are displayed in Figure 3.

Figure 4: Normalised histograms of lateral error val-
ues. Collected from 200 images by Kinect v1 and
Kinect v2, and 100 images by MotionCam-3D. Each
histogram represents a scene containing the white pa-
per at 0° angle. The distances differ for each camera,
being the shortest at which the paper was captured
completely; 1m for Kinect v1, 0.75 m for Kinect v2,
0.5 m for MotionCam-3D. Each histogram contains
fitted normal distribution (dashed line).

Figure 5: Visualisation of the relationship between
the standard deviation of lateral noise, measured in
mm, surface angle (left column), and distance (right
column). Each row contains data from a different de-
vice. The plots in each column and row share the x
and y axes respectively. In the plots of the left col-
umn, the underlying angle values are all multiples of
10. A random shift of horizontal position between
frames was added for legibility.

In order to estimate the effects of angle and dis-
tance of planar surfaces on noise levels we segment
the paper in the range images using manual annota-
tion in conjunction with the Canny edge detection [4]
and Hough transformation [6].

3.3. Lateral Noise Estimation

To estimate the lateral noise levels we focus on
the paper boundary. We first estimate the position of
the boundary by fitting a line using orthogonal dis-
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tance regression on the edge pixels. We perform this
regression jointly for all scans with a given scene
setup. We then calculate the distances of the edge
pixels from the estimated boundary line.

Example histograms of the distances from the line
fit are shown in Figure 4. The Kolmogorov-Smirnov
test rejected the normality of the distribution, prob-
ably due to the effects of quantization in pixel posi-
tions. However, we note that the error distributions
closely resemble normal distributions.

As seen in Figure 5, the level of lateral noise does
not significantly change with surface angle. Previous
research indicates hyperbolic increase of lateral noise
at angles greater than 60° for Kinect v1 [18]. Our
experiments did not indicate such increase, however,
thanks to large number of invalid pixels, we were not
able to capture data for angles greater than 70°, and
subsequently extract lateral noise. MotionCam-3D
exhibited similar inability to capture surfaces at ex-
treme angles. Contrastingly, Kinect v2 had no prob-
lem with 80° angle and exhibited no increase in noise
with increasing angle.

A slight decline in the standard deviation with ris-
ing angle can be observed. We note that this decline
may not be caused by the change in angle directly,
but as a result of presence of other noise causing a
great number of invalid pixels and thus preventing
lateral noise analysis. This type of noise increases by
rising distance, as surfaces with progressively lower
angles with the camera view are affected. Hence, sur-
faces at greater angles are harder to measure from
greater distances, leaving fewer samples resulting in
lower standard deviation.

Unlike in the case of the paper’s angle, the stan-
dard deviation of the errors is not constant through-
out all distances, as seen in Figure 5. Notewor-
thy is the elevated standard deviation at shorter dis-
tances, between 50 cm and 1 m, for Kinect v2 and
MotionCam-3D. Kinect v1 was not able to capture
the paper at such short distances at all. The standard
deviation of errors in millimetres increases linearly
with increasing distance, at different rate for each
camera, depending on the camera’s physical param-
eters [18]. Note that this is equivalent to the standard
deviation remaining constant under varying distances
when measured in pixel coordinates.

By aiming to capture the scenes simultaneously
with multiple cameras, the position of the paper was
not always perfectly centred for all cameras. As a
result, for the Kinect v2, the paper’s right edge was

Figure 6: Visualisation of the relationship between
standard deviation of axial noise, the surface angle
(left column), and the distance (right column). Each
row contains data from a different device. The plots
in each column and row share x and y axes.

much closer to the centre than the left edge. On mul-
tiple occasions, the right edge was captured as a per-
fectly vertical line in all 200 images captured for the
scene, while the left edge was not. This can be ob-
served in Figure 5 as some values are reported with
standard deviation of 0. From our limited data, a
correlation of lateral noise with the pixel’s position
seems likely. Further experimentation would be re-
quired to fully explore this relationship.

The results show that MotionCam-3D exhibits
overall lower levels of lateral noise than both Kinect
cameras with Kinect v2 achieving lower noise levels
of the two.

3.4. Axial Noise Estimation

To obtain the distributions of axial noise we first
performed low-pass filtering jointly on all scans of
scenes with the same scanner distances and angles.
We then calculated the standard deviations of dif-
ferences of depth from the values obtained by fil-
tering. We have opted for this approach as despite
using heavy stock paper, the paper surface was not
perfectly planar. We have also tested different types
of filtering which led to similar results.

Similar to lateral noise, the relationship between
angle and distance on the standard deviation of noise
has been investigated. The results are visualised in
Figure 6. MotionCam-3D exhibits least axial noise,
followed by Kinect v2 and Kinect v1 with the great-
est magnitude of noise.

From the right column in Figure 6, the influence
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Figure 7: Fitted polynomial function of degree 2 for
axial noise of MotionCam-3D, displayed as the sur-
face, with the measured values, displayed as points
colored by respective standard deviation of the sam-
ple.

of surface distance on the standard deviation can be
clearly seen for both SL cameras, Kinect v1 and
MotionCam-3D. For Kinect v2 camera, the standard
deviation does not change much with increasing dis-
tance compared to the other two cameras. The influ-
ence of surface angle can also be seen. In the case
of Kinect v1, the values of standard deviation seem
to fluctuate unpredictably with changing angle. This
may be caused by different sources of noise such as
systematic noise arising from the imaging process.

3.5. Noise Models

In previous subsections we have shown that stan-
dard deviations of both types of noise depend on
both the distance of objects to the scanners as well
as the angle of the imaged surface. To model the
noise we fit the data shown in Figure 5 and Figure 6
with degree two polynomials using the ordinary least
squares method. The resulting coefficients for both
lateral σL and axial noise σz are in Table 1. The re-
sulting fit for the axial noise of MotionCam-3D is
shown in Figure 7. .

4. Enhancement of Synthetic Training Data
with Emulated Noise

In this section we present an experiment that ver-
ifies the importance of selecting an optimal level
of noise when generating synthetic training data for
deep neural network training. We evaluate the effects
of noise on a simple segmentation task. We train the
networks on synthetic data and evaluate them on real-
world scans.

4.1. Real Evaluation Dataset

To create our real data we manufactured five 3D
models of the Stanford Armadillo. The objects were
printed on J750 using the Vero family of materials.
This allowed us to capture 55 real scans using 3 dif-
ferent variants of the MotionCam-3D. The real data
contain samples from a close distance of around 70
cm, mid-range captures from around 100 cm, and
longer-range shots from 150 cm. This should model
the various use cases of the 3D scanning device, with
varying amounts of noise. Apart from the Armadil-
los, various cuboid-shaped objects were included in
the scene, some of which had a slightly reflective ma-
terial causing further noise. The real data was split
into a validation set with 20 samples, a test set of 25
captures, and 10 samples were used for training.

4.2. Training Data

To evaluate the benefit of adding axial and lateral
noise into synthetic data, we have rendered training
data for the task of object segmentation using spe-
cialized data generator [11], implemented to simu-
late the MotionCam-3D and other Photoneo scan-
ners. We are dealing with a simplified setting - seg-
mentation of a singular object, the Armadillo fig-
urine.2 Due to a current limitation of the renderer,
we were unable to account for the angle of the sur-
face, thus the amount of noise is only affected by dis-
tance. This simplification should not hinder the eval-
uation, as per our analysis the surface angle does not
greatly affect the standard deviation of the noise, but
the amount of missing samples instead. Some sam-
ples also contain cuboid-shaped walls of containers,
which served as boundaries for the physical simula-
tion of placing the Armadillos into the scene.

The dataset contains 180 synthetic samples. Ad-
ditionally, we have included 10 real samples, which
helped to avoid over fitting and permitted longer
training. The dataset was designed to empirically
evaluate the generalization of UNet-like CNN [19].
As different types of noise are abundant in the real
samples, a network trained on clean rendered data is
often unable to generalize.

4.3. Training

A 4-channel input image with surface normals
and range image was used as an input to the U-Net
shaped CNN. We have performed purely stochastic

2http://graphics.stanford.edu/data/
3Dscanrep/
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Table 1: Fitted standard deviations of lateral noise (σL - in pixels) and axial noise (σz - in millimeters). Param-
eter θ represents the surface angle and z the distance from the camera center.

Kinect v1 σL (z, θ) [px] = 0.94 + 4.51 · 10−5 · z + 6.20 · 10−4 · θ

Kinect v2 σL (z, θ) [px] = 0.736 − 6.20 · 10−4 · z + 5.35 · 10−3 · θ + 2.13 · 10−7 · z2 − 1.40 · 10−6 · z · θ − 4.13 · 10−5 · θ2

MotionCam-3D σL (z, θ) [px] = 0.915 − 6.91 · 10−5 · z + 2.84 · 10−3 · θ

Kinect v1 σz (z, θ) [mm] = −0.422 + 6.89 · 10−4 · z + 2.24 · 10−2 · θ + 5.99 · 10−7 · z2 − 2.70 · 10−6 · z · θ − 1.52 · 10−4 · θ2

Kinect v2 σz (z, θ) [mm] = 1.17 + 9.72 · 10−5 · z − 1.37 · 10−2 · θ − 6.35 · 10−9 · z2 + 7.86 · 10−6 · z · θ + 1.17 · 10−4 · θ2

MotionCam-3D σz (z, θ) [mm] = 0.599 − 1.43 · 10−3 · z − 8.94 · 10−3 · θ + 8.84 · 10−7 · z2 + 1.27 · 10−5 · z · θ + 2.75 · 10−5 · θ2

(a) Mn = 0 (b) Mn = 1 (c) Mn = 2 (d) Mn = 3

Figure 8: Synthetic sample from our data with varying amount of lateral noise added to range images.

training with batch size = 1, Adam optimizer with
10−4 initial learning rate, and binary cross-entropy
as the loss function. The number of epochs was de-
termined by a training callback. It observed the IoU
on the real validation set and picked the best model,
which was then evaluated on the test set.

4.4. Varying Noise Levels

To verify the effect of various levels of emulated
lateral and axial noise we train multiple models each
using a different level of added noise. To control the
noise we define a noise multiplicator:

Mn =
σsynth
σest

, (2)

where σest denotes the estimated standard deviation
of noise as presented in subsection 3.5 and σsynth
denotes the standard deviation of noise added to the
training data. Note that the estimated standard de-
viations of noise depend on the surface angles and
distances and the type of noise (axial, lateral), but the
ratio Mn is independent of these variables. The value
of Mn = 0 indicates no noise added and Mn = 1 in-
dicates noise added according to the levels estimated
in the previous section. The effects of various values
of Mn on the produced synthetic samples are shown
in Figure 8.

4.5. Results

We evaluated models for varying values of Mn

on the real testing data. Figure 9 shows the seg-
mentation IoU metric for the evaluated models. The
network trained on synthetic data with slightly more
noise than estimated (Mn = 1.25) achieved the best

results. We hypothesize that by the slight increase of
the σsynth arising from analysis, other noise types are
implicitly modeled, effectively making the network
more robust to noise uncaptured in the synthetic por-
tion of the training data. This results indicates that
adding slightly more noise than estimated allows the
network to be more robust while retaining good ac-
curacy.

The results also show an interesting second peak
at Mn = 2. By qualitative evaluation, we have
verified that the network performance was better for
scans captured from larger distances. In such cases,
large amounts of interference noise is present, aris-
ing from the character of structured light technology
and the presence of ambient lightning. This case is
visualized in Figure 10, where the network trained
on data without noise wrongly segments the rough,
noisy surfaces.

On the other hand, we have samples captured from
a close distance, where the captured surfaces are
smoother and objects have sharper boundaries. In
these situations, networks trained with greater noise
levels (Mn ≥ 1.5) have trouble with the segmenta-
tion of fine details and manage to only detect larger
blobs of the objects, see Figure 11. By a com-
bined quantitative and qualitative analysis we con-
clude from our experiment that the network trained
on data with noise Mn = 1.25 delivers the most ro-
bust performance over various cases. Lastly, we note
that setting Mn = 1.75 failed to both segment fine
details in close-shots and was not as robust as net-
works trained for more extreme noise, delivering the
weakest performance overall.
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Figure 9: Performance of neural network for object segmentation trained over data with varying amounts of
noise. Multiplier Mn of the sigma from our analysis is shown on the horizontal axis with 0.25 interval. The
resulting average IoU on a test set of real captures is visualized by height of the bars. For clarity, the top 6
values are depicted in green, 6 worst are in red and the remaining 5 middle results are in orange.

(a) (b) (c)

Figure 10: Qualitative evaluation on a real distant
capture. As per our analysis, with larger distance,
more noise is present, see normals in (a). In this sit-
uation, network trained on clean data without noise
wrongly segments the rough surface as an object, see
(c). On the other hand, network trained on data with
noise (Mn = 1.25) is resistant to the noise (b).

(a) (b) (c)

Figure 11: Qualitative evaluation on a real scene cap-
tured in close distance. Image of surface normals
used as input to the networks is shown in (a). The
masks produced by the trained network are shown
for (b) Mn = 1.25 (c) Mn = 2. Note the inability of
the latter network to segment fine details.

Albeit limited in scope, the experiment presented
in this section provides some insights into the ef-
fect of noise emulation during synthetic training data
generation on real-world performance of the trained
networks. Our experiment verifies the importance of
noise inclusion in synthetic training data. Addition-
ally, we can observe that adding too much noise may
lead to poor models which are unable to detect fine
details in the scene structure. We thus conclude that
the ability to model noise as it occurs in real 3D cam-
eras is an important aspect of synthetic training data
generation.

Our data3 and code4 used for noise analysis and
network training is publicly available.

5. Conclusion

In this paper we have presented an approach for
modeling axial and lateral noise of real 3D scanning
devices. Using our proposed methodology it is pos-
sible to obtain a model of these types types of noise
with respect to imaged object distance and surface
angles. Knowledge of the noise parameters can be
valuable when processing obtained 3D scans.

We also show that emulating noise when training a
deep learning segmentation model on synthetic data
is beneficial. Our experiment shows that the perfor-
mance of the segmentation network on real data is
best when the emulated noise is slightly stronger than
estimated from the real scans.

In future, other types of noise should be modeled.
Furthermore, the combined range image with surface
normals should be compared to other data representa-
tions. We plan to expand the evaluation of the effects
of noise levels with extended data as well as decou-
pling the effects of different types of emulated noise.
Lastly, the interaction of added noise with other data
augmentation techniques is worth investigating.
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Abstract. We propose a method for detecting and
automatically correcting perceptual artifacts on syn-
thetic face images. Recent generative models, such
as diffusion models, can produce photorealistic im-
ages. However, these models often generate visual
defects on the faces of people, especially at low reso-
lutions, which impairs the quality of the images. We
use a face detector and a binary classifier to iden-
tify perceptual artifacts. The classifier was trained
on our dataset of manually annotated synthetic face
images generated by a diffusion model, half of which
contain perceptual artifacts. We compare our method
with several baselines and show that it achieves su-
perior accuracy of 93% on an independent test set.
In addition, we propose a simple mechanism for au-
tomatically correcting the distorted faces using in-
painting. For each face with artifact response, we
generate several replacement candidates by inpaint-
ing and choose the best one by the lowest artifact
score. The best candidate is then back-projected into
to the image. Inpainting ensures a seamless connec-
tion between the corrected face and the original im-
age. Our method improves the realism and quality of
synthetic images.

1. Introduction

Synthetic image generation has made a giant leap
in recent years, thanks to the development of pow-
erful generative models, such as generative adver-
sarial networks (GANs) [10, 15] and diffusion mod-
els [24, 23]. These models generate photorealis-
tic images that are often indistinguishable from real
photographs by human observers. However, they
also sometimes produce visually unpleasant and dis-
tracting artifacts, including distorted faces.

In this paper, we focus on detecting and correct-
ing perceptual artifacts in synthetic face images. We

use the Stable Diffusion – Realistic Vision model [5],
which is a popular text-to-image model that can gen-
erate high-quality images from complex captions.
We observe that, although this model can generate
amazing images, it often produces artifacts on the
faces of people, especially at low resolutions.

Unlike GANs, which have a known “truncation
trick” [3] to avoid artifacts by restricting the latent
codes to a narrow range (near the mean latent vec-
tor), diffusion models do not have such a simple tech-
nique to control the trade-off between the quality and
the diversity of generated images. Therefore, we pro-
pose to train a detector to identify perceptual artifacts
on synthetic face images, and use its output to auto-
matically correct the generated faces. See Fig. 1 for
an example. Our contributions are as follows.

• We trained a binary classifier to detect percep-
tual artifacts on face images generated by the
diffusion model by learning on our dataset. We
manually annotated a set of 1274 images where
a half of the samples contained perceptual arti-
facts.

• We compared our method with several base-
lines, such as the size of the synthetic face,
the response score of the face detector, the
response of the LAION Aesthetics predic-
tor [25], and a recent perceptual artifact detec-
tor PAL4VST [33], showing that our method
achieves superior accuracy in detecting arti-
facts.

• We proposed a fully automatic method for fix-
ing distorted faces generated by the diffusion
model, using inpainting. For each face with the
artifact response, we generate several replace-
ment candidates by inpainting and choose the
best one by the lowest artifact score.
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Original Correction

Detail

Figure 1: Detection and correction of perceptual artifacts on synthetic faces performed fully automatically by
our method. Left image is the input, an original image generated by Realistic Vision model [5] with the prompt
“A family enjoying a picnic in a vibrant, flower-filled meadow”. Right image shows the result of our method.
Bottom images are zoomed details of distorted/corected face pairs.

The rest of the paper is structured as follows. Re-
lated work is reviewed in Sec. 2, the method is pre-
sented in Sec. 3, experiments are given in Sec. 4 and
finally, Sec. 5 concludes the paper.

2. Related work

Long before the availability of photo-realistic syn-
thetic generators, researchers aimed to assess the
quality of images rather from a technical perspec-
tive (for sharpness, noise, compression, etc.) [26, 18].
Early attempts to assess the perceptual image qual-
ity were made even before the boom of deep learn-
ing. Paper [28] classified photos taken by amateurs
and professional photographers, or paper [7] learned
a simple classifier on hand crafted features using a
dataset from peer-rated photo website.

Recently, there have emerged many works on
image aesthetics assessment. To name a few, the
LAION Aestitics predictor [25] learns a simple
multi-layer perceptron on CLIP embeddings [22],

given crowd sourced aesthetics score. Paper [16]
learns the aesthetic score indirectly from user com-
ments of online images. ‘Naturalness’ of an image is
learned in [4]. For a comprehensive review of these
methods, we recommend surveys [8, 1].

A standard approach to assess the quality of a gen-
erative model, is to use the Fréchet Inception Dis-
tance (FID) [11]. However, it assesses both the qual-
ity and diversity of generated images and is not de-
fined for a single sample, but needs a large set of gen-
erated images.

The recent FreeU [27] promises a universal
improvement of visual quality of diffusion mod-
els, without any additional training, by simply re-
weighting the skip connections in the denoising U-
NET. However, the quality improvement seems to be
at the cost of diversity and even prompt fidelity. A
different approach [2] to improve the generator qual-
ity is to train the diffusion model by reinforcement
learning, possibly using the aesthetic reward.
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More closely related to our work are papers that
learn perceptual artifacts in synthetic images. Pa-
per [31] detects artifacts in super-resolution GANs,
paper [34] detects artifacts in inpainting. The recent
work [33] learns a predictor to localize the percep-
tual artifacts in images produced by recent synthetic
generator models including the Stable Diffusion [24].
The paper also proposes a mechanism similar to ours
to correct the artifacts. We compare with their results
and show that our method has superior artifacts de-
tection accuracy. Our automatic correction differs in
the mechanism to select the best one out of several
candidate replacements.

Our problem is indirectly related to out-of-
distribution (OOD) [32] detection problem, where
only the in-distribution samples are available for
training. Although face images form a relatively
compact domain, we observe that artifacts generated
by the diffusion model are so specific that the su-
pervised classification problem is more appropriate.
Natural drawback of this choice is that we are model
dependent and have to retrain for a new model.

Another related problem is forensic detection of
synthetic images, a.k.a. ‘deepfake’ detection [20]. It
might sound easy to train synthetic vs. real face im-
age classifier and use it to spot images with artifacts.
However, it is not true that this classifier will respond
with higher synthetic score on images with obvious
perceptual artifacts. We will show this experiment
among our baselines. The reason is that the real vs.
synthetic classifier learns low-level signal features
(as reported e.g. by [30, 6]) and the higher-level con-
tent seems to be overlooked.

3. Method

Our aim is to develop a method to detect artifacts
in synthetic images and correct them automatically.
This work focuses on artifacts in the facial area,
firstly, because human perception is very sensitive to
faces and secondly, because a lot of artifacts in re-
cent generative models are concentrated in the facial
area. Specifically, our data-oriented method consists
of two modules a detection module, see Sec. 3.1, and
automatic face artifact removal module, see Sec. 3.2.

3.1. Artifact detection module

The artifact detection module consists of an off-
the-shelf face detector [13] and a face artifact (bi-
nary) classifier. For the architecture we choose
the powerful vision transformer for image classifica-

(a)
A face framed
by a hooded

sweatshirt on a
chilly day.

(b)
A group of

friends gathered
around a bonfire,

their faces
illuminated by the

flames.

(c)
A farmer driving
a tractor through
a field of corn.

Figure 2: Examples of generated images alongside
with their prompts.

tion [9]. The training is done in a supervised manner
on our manually annotated synthetic dataset.

Synthetic dataset Realistic Vision [5] is a popular
text-to-image diffusion model. Each generated im-
age requires as an input a Gaussian noise and textual
prompt to guide the diffusion process.

To make the synthesis fully automatic, we gen-
erated random prompts using ChatGPT [21]. The
queries for ChatGPT aimed to produce textual
prompts describing images containing (1) people
with focus on whole-body shots (e.g. Fig 2b) and
(2) people’s portraits (e.g. Fig 2a). We obtained 200
prompts in each of the queries, 400 in total1. During
the dataset synthesis, we randomly sampled a prompt
and an initial Gaussian noise to produce the images.
We used the default negative prompt for the Realistic
Vision model as recommended by its authors.

With this process, we synthesized a set of 3k im-
ages and manually separated the samples into two
classes – with and without artifacts. The presence of
artifacts is not a binary property in fact, as the bound-
ary appears rather fuzzy, and for certain images it is
very challenging and subjective to decide one of the
two classes. Hence in our dataset, we include only
the most severe and disturbing artifacts. Given the
random nature of the generated prompts, some im-
ages had to be completely discarded, because they
did not contain any visible face (See Fig. 2c).

Subsequently, we detected faces in the collected
images using the YOLO v8 Face detector [13]. Faces
with size smaller than 50 pixels were discarded. All

1Image dataset with the prompts will be released.
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faces were aligned, so that the eye-keypoints line 2

was parallel with the horizontal axis.
In total, the dataset of 1274 images was randomly

split, such that the training set consisted of 406 im-
ages for each class, validation set of 97 for each class
and the test set of 134 faces for each class.

3.2. Automatic face artifact removal

We propose a simple mechanism to automatically
and seamlessly rectify faces with artifacts in syn-
thetic images.

The idea is to replace faces with detected artifacts
by generative inpainting. Inpainting is a process used
in image editing where unwanted parts of an image
are filled in seamlessly to fit the overall context. We
used the same generative model to do the inpaint-
ing [5]. Since the model struggles with generating
faces at low resolution, we zoom in around the face
bounding box to increase the likelihood that the in-
painted face were artifact-free. Moreover, we always
generate several inpainting candidates and decide the
best one by our classifier response.

Our method consists of the following steps:

1. In the generated image, we find a face for which
our classifier is positive for artifacts.

2. Using inpainting, we generate N candidates for
replacement. Note that we zoom in, such that
the face bounding box is magnified by factor m
and inpaint the pixels inside the original bound-
ing box.

3. For each of the N replacement candidates, we
measure the response of our artifact classifier
and choose the winner as one with the lowest
score. See Fig. 3 for an example of replacement
candidates sorted from highest to lowest artifact
score.

4. The winning candidate is finally subsampled by
1/m to the original scale and projected back
into the original image.

We cannot enlarge the face to the maximum pos-
sible size, because inpainting requires some context.
If the context is insufficient, i.e., the area around the
face region is too small and uninformative, the re-
sulting inpainting does not match the original image
(in terms of content, geometry, and lighting/shading).

2Facial keypoints are also returned by the YOLO Face detec-
tor.

Therefore, we zoom in by factor m = 2, which is
emprically found as a trade off between model re-
alism and consitency with context. Inpainting itself
ensures that the connection with the original image is
seamless and no additional blending is needed.

We set the number of replacement candidates N =
10, as a trade-off between quality and computational
time. More candidates increase the chance of finding
a better candidate, but the system is less responsive.

This way we can effectively remove face artifacts
and thus improve the perceptual quality and realism
of generated images.

3.3. Implementation details

We initialized the classifier network with weights
pretrained on the ImageNet dataset. The network
was trained for 10 epochs with AdamW [19] opti-
mizer and the initial learning rate of 5e-05. During
training, we employed a linear learning rate sched-
uler and augmented our dataset by mirroring each
example and adding it to the dataset. The images
were resampled to ViT input resolution 224 × 224
pixels. Following the preprocessing of the pretrained
ViT, we use normalization across the RGB channels
with mean [0.5, 0.5, 0.5] and standard deviation [0.5,
0.5, 0.5].

For inpainting in the correction module, we used
the same generative model and HuggingFace’s dif-
fusers library [12] (v0.17.1) with the following
settings: num inference steps=200, strength=0.45,
guidance scale=15.5.

4. Experiments

To evaluate our method, we conducted number of
experiments. Firstly, we report quantitative evalua-
tion, comparing our classifier to other methods for
artifact detection. To the best of our knowledge,
there exists only one paper contributing directly on
this topic, that is PAL4VST [33]. For that reason,
we propose several additional baselines to compare
our model with. Secondly, we present the qualita-
tive evaluation of the baselines by ranking the test
set according to responses of each classifier. Finally,
we show results of the entire detection and automatic
correction pipeline.

4.1. Baselines

Face-size based classifier. We observe high corre-
lation between face size and the severity of artifacts.
The size was determined from face detections found
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Figure 3: Replacement candidate ranking. To find a replacement for the original face image with artifacts (left),
we generate multiple candidates using inpainting and sort them based on the response of our artifact classifier.
Subsequently, we select the one with the best response as a replacement for the original face.

by the YOLO v8 face detector [13]. For non-square
bounding boxes, we took the longer side. The clas-
sification threshold that maximizes classification ac-
curacy was determined on the validation set.

Laion Aesthetics predictor. The Laion Aesthet-
ics predictor [25] was trained to predict an aesthet-
ics score in range [0, 10] based on the visual appear-
ance of an image, 10 being the best. The threshold
was again found to maximize the validation accuracy.
The model was trained on whole images, thus we
asses this baseline in two modes, one with whole im-
ages as inputs and second mode with the face crops.

Face-detection-score based classifier. The YOLO
v8 face detector [13] is our next choice for a baseline;
specifically, the confidence score for each bound-
ing box. Yet again, we determine the classification
threshold on the validation set.

Perceptual artifact localisation (PAL4VST).
Zhang et al. [33] train a segmentation transformer
for artifact localization in synthetic images generated
by multiple generative models (including the Stable
Diffusion [24]). The output is a segmentation mask
where active pixels mark the areas with artifacts.
Since the method expects whole images, we test
again two scenarios, face crops and whole images.
To compare this method to our facial artifact detec-
tion, we inferred the classification labels as follows.
We consider the prediction as “with artifacts” if at
least one pixel in the output mask was active for the
face crop or inside the face bounding box in case of
whole images. Otherwise, the predicted label was
“no artifacts”.

Synthetic vs Real classification baseline. As next
baseline, we consider a classifier between real and

Model Acc AUC
Face-size 0.8731 0.9213
Laion Aesthetics [25] 0.8134 0.9420
Face detector score 0.5896 0.6475
PAL4VST [33]
(face crops)

0.7164 0.7981

Synth/Real
(last layer finetuned)

0.7761 0.8651

Ours 0.9254 0.9678
Laion Aesthetics [25]
(whole images)

0.5633 0.5805

PAL4VST [33]
(whole images)

0.6531 0.7766

Table 1: Quantitative results. Classification Accu-
racy (Acc) and Area under the precision-recall curve
(AUC) calculated on our test set.

synthetic images. The classifier was trained in a su-
pervised manner with 10k images in each class. The
synthetic class was generated as described in Sec. 3.1
with the recommended negative prompt. As the real
class, we used randomly selected subset of images of
the FFHQ dataset [14] and cropped the faces in the
same way as in the synthetic class.

We trained ViT, started from ImageNET model,
but trained only the last layer and kept other weights
frozen. This model achieved 99% accuracy in dis-
criminating synthetic vs real images. We observed,
that artifact detection accuracy was higher than when
training the entire model. We hypothesize that the
latter option learns the low-level signal features, as
reported by [30, 6], and not the image content.

The threshold for artifact detection was again set
on the validation set.

4.2. Quantitative results

The comparison between our artifact detector and
the baselines is presented in Table 1. Namely, we
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Figure 4: Image ranking – worst first. Each row de-
picts five worst images from the test set. Ranking is
based on the response of each classifier.

report classification accuracy (Acc) and the area un-
der the precision-recall curve (AUC). Our method
achieves superior results for both metrics.

As expected, the simple face-size based classifier
is a strong baseline. It confirms the artifacts are
most common in faces in low resolution, but might
be present in higher resolution, too.

Laion Aesthetics predictor in the whole image set-
ting is weaker. Likely, the mismatch between detect-
ing artifacts and predicting aesthetic quality is signif-
icant. Ranking in Fig. 5 suggests that the most aes-
thetics of an image reside in colorfulness and not in
structural correctness. We also observe that the ver-
sion with cropped faces is significantly more accu-
rate, probably because the artifacts are more promi-
nent.

Face detector score is a surprisingly weak base-
line. We hypothesize that unlike classical scan-
nig Viola-Jones [29] detector, YOLO [13] decides
on a larger context (i.e., a human body), the dis-
torted faces do not impact the score much. Faces
with severe artifacts were confidently detected on our
dataset.

PAL4VST [33] does not perform very well to de-
tect face artifacts either on the face crops or whole
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Figure 5: Image ranking – best first. Each row de-
picts five best images from the test set. Ranking is
based on the response of each classifier.

images, despite it is a recent method trained on a
much larger dataset of generated images including
Stable Diffusion.

Synth/Real classifier is another rather weak base-
line. It is a proxy problem that does not solve the
target artifact detection task very well.

4.3. Ranking experiment

To qualitatively compare all the models, we con-
duct ranking experiment on held-out test set. Each
test image is evaluated using each model and ranked
by its response; in the case of PAL4VST, we rank by
the size of the region with artifacts, i.e., the number
of active pixels in the segmentation mask. Images
with the most severe artifacts are depicted in Fig. 4,
the cleanest or the most photo-realistic are in Fig. 5.

We can see that different baselines returned differ-
ent ranking, which indicates each model focus on dif-
ferent features. Laion Aesthetics predictor returned
rather visually pleasant (colorful) images as the best.
PAL4VST returned very distorted images as the best
ones, YOLO detect response returns several good im-
ages among the worst ones. The ranking confirms
quantitative results in Tab. 1.
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Figure 6: Example of the application of our method.
Original image (top) contains severe artifacts in the
facial area. Artifacts are discovered using our pre-
trained classifier and multiple candidates for replace-
ment are generated using inpainting. The candidates
are again evaluated by our classifier and ranked ac-
cording to its response. The one with the best score
is selected as the replacement. The corrected images
are shown in the middle row, while the details of the
faces are depicted in the bottom row.

Original Correction

Artifact
detail

Artifact
detail

Correction
detail

Correction
detail

Figure 7: An example of automatic correction of
face artifacts in a synthetic image. The original im-
age contains unnatural facial features. The newly-
generated faces look much more realistic.

4.4. Results of the entire pipeline

Finally, we show results of the entire pipeline
(detection and correction) on several images. See
Figs. 1, 6, 7, 8 for examples. Our detector finds
distorted faces and correctly selects a good replace-
ment candidate. The result is a seamless correction
of faces with artifacts.

5. Conclusion

In this work we propose an artifact classifier for
synthetic face images trained on our manually anno-
tated dataset. We provide comparison with several
baselines such as face-size based classifier, LAION
Aesthetics predictor or the recent perceptual artifact
detector [33], showing that our method achieves su-
perior classification metrics in face artifact detection.

Furthermore, we demonstrate that our method is
applicable in automatic correction of the facial arti-
facts caused by recent diffusion models. Specifically,
we generate multiple replacement candidates of the
face with artifacts using standard inpainting. Sub-
sequently, we evaluate the new face candidates with
our classifier and, in the end, we select the candidate
with the lowest artifact score as the replacement.

Limitations and future work. One of the weak-
nesses of our method is the fact that during the au-
tomatic artifact correction, we use quite an ambigu-
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Figure 8: Example of automatically rectified face ar-
tifacts, produced by our method.

ous prompt “face” to regenerate the image. Due to
this fact, we do not have any guarantee that the cor-
rected face will be of the same age or gender, we only
rely on the context. In minor cases, semantically in-
compatible faces are found. That might be avoided
by keeping the original prompt if available or esti-
mate the prompt with off-the-shelf image captioning
model such as BLIP [17].
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Abstract. Due to the recent advances in generative
deep learning, numerous techniques have been pro-
posed in the literature that allow for the creation of
so-called deepfakes, i.e., forged facial images com-
monly used for malicious purposes. These devel-
opments have triggered a need for effective deep-
fake detectors, capable of identifying forged and ma-
nipulated imagery as robustly as possible. While
a considerable number of detection techniques has
been proposed over the years, generalization across
a wide spectrum of deepfake-generation techniques
still remains an open problem. In this paper, we study
a representative set of deepfake generation methods
and analyze their performance in a cross-dataset set-
ting with the goal of better understanding the reasons
behind the observed generalization performance. To
this end, we conduct a comprehensive analysis on
the FaceForensics++ dataset and adopt Gradient-
weighted Class Activation Mappings (Grad-CAM) to
provide insights into the behavior of the evaluated
detectors. Since a new class of deepfake genera-
tion techniques based on diffusion models recently
appeared in the literature, we introduce a new subset
of the FaceForensics++ dataset with diffusion-based
deepfake and include it in our analysis. The results
of our experiments show that most detectors over-
fit to the specific image artifacts induced by a given
deepfake-generation model and mostly focus on lo-
cal image areas where such artifacts can be expected.
Conversely, good generalization appears to be corre-
lated with class activations that cover a broad spatial
area and hence capture different image artifacts that
appear in various part of the facial region.

1. Introduction

With the advances in generative deep neural net-
works, there has been a surge in methods capable of
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Figure 1: We evaluate the performance of three
conceptually distinct deepfake detection methods
in a cross-dataset setup on the FaceForensics++
database and investigate the reasons for the different
generalization capabilities using Gradient-weighted
Class Activation Mappings (Grad-CAM). To facili-
tate the analysis, we also introduce a dataset of deep-
fakes, generated with a diffusion-based generator.

synthesizing forged and/or manipulated images and
videos. The most widespread synthesis methods are
based on Generative Adversarial Networks (GANs)
[6,11,21], and in recent years, solutions utilizing the
concept of denoising diffusion [8, 13, 40]. Human
faces have always been one of the most popular tar-
gets for such synthesis and manipulation techniques,
as this allows for the design of numerous practical
applications, ranging from applications in the enter-
tainment industry (e.g., movies and smartphone ap-
plications), security systems, privacy-enhancing so-
lutions and many more [22]. However, due to the
high level of realism ensured by these methods, they
can also be employed for malicious purposes, such as
creating fake news or falsifying evidence. All of this
has prompted the development of so-called deepfake
detectors to alleviate this threat.
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Among the first detectors developed were tech-
niques that work as binary classifiers. Such discrim-
inative detectors are commonly trained on a dataset
to perform classification between images represent-
ing original/pristine, unaltered images and images
that have been manipulated using one of the exist-
ing deepfake generation methods [1, 3]. A limita-
tion of the discriminatively-trained approach is that
the errors made by the synthesis method in generat-
ing deepfakes are quite specific to that method. This
results in poor generalization of the detector, which
learns to classify a specific type of deepfake. In real-
life deployment scenarios where we lack informa-
tion about how the forgery was created, it is cru-
cial for the detector to perform well regardless of the
type of deepfake encountered. Some solutions have
addressed these problems by introducing a specific
pipeline before the classifier that extracts additional
information from the given image, either by consid-
ering multiple modalities [20] or by manipulating the
image [27, 39]. The latter proves to be one of the
more effective approaches to improving generaliza-
tion. The idea behind these methods is that they gen-
erate so-called pseudo deepfakes and use them as an
extension of the training dataset, or they learn exclu-
sively on them. Images can be augmented in various
ways, which determines the types of artifacts that are
injected into the training set of the detector. How-
ever, even these methods can only improve gener-
alization to a certain extent, as they are fundamen-
tally discriminative. In this domain, approaches have
also been proposed that use only one class for train-
ing [12,15]. These methods learn only from samples
of unaltered images, defining in a way what a normal
image is, and anything deviating from it is marked as
an anomaly—indicating a potential deepfake. These
methods are expected to be robust to different types
of deepfakes, as they do not encounter any real deep-
fake samples during training.

In this paper, we aim to explore the generalization
capabilities of existing deepfake detectors in cross-
dataset experiments, where the term cross-dataset
refers to the fact that the detectors are tested on
deepfake types that are distinct from those used for
training. Additionally, we are interested in the per-
formance of existing detectors with the more re-
cent diffusion-based deepfake generation techniques,
that have not been studied widely yet in the lit-
erature. Finally, our goal is also to understand
the causes behind the observed performances. To

this end, we conduct a comprehensive cross-dataset
evaluation of various types of detectors on deep-
fakes from the FaceForensics++ dataset [25] and
study the results quantitatively as well as qualita-
tively through Gradient-weighted Class Activation
Mappings (Grad-CAM) [26].

2. Related work

In this section, we present a brief overview of rel-
evant works on deepfake detection. For a more com-
prehensive review of existing detectors, the reader is
referred to some of the excellent surveys on this topic
available in the literature [22, 23, 36].

Early Detectors. Early deepfake detectors primarily
relied on the identification of known artifacts, intro-
duced into the forged images by the deepfake gen-
eration techniques. As a result, this group of detec-
tors used conventional (hand-crafted) descriptors and
classifiers to detect blending signs [2, 38], deviations
of the face from the surrounding background (e.g.,
incorrect lighting) [28], identification of face warp-
ing artifacts [19], and even methods that observe the
broader context of a video, such as detecting unusual
eye blinking patterns [18] or observing lip synchro-
nization and corresponding speech [14]. Such de-
tectors provided promising initial results, but were
limited in their performance due to their focus on
explicit (human-defined) image artifacts, induced by
the deepfake-generation models.

Discriminative Detectors. To mitigate the depen-
dence on manual modeling of image artifacts, a more
recent group of detectors approached deepfake detec-
tion from a machine learning perspective and formu-
lated the problem as a binary classification task. So-
lutions from this group, commonly learn a discrim-
inative model, e.g., a convolutional neural network
(CNN), on a dataset of real and fake images, and
during the training process, simultaneously learn rel-
evant features for detection. It turns out that even
standard (off-the-shelf) CNN architectures already
perform better in addressing deepfake detection than
the early hand-crafted techniques discussed above,
while more specialized solutions further improve on
these results. In [3], for example, the authors intro-
duced Xception, a CNN model that with minor mod-
ifications was demonstrated to be highly effective for
deepfake detection [24]. Tariq et al. [33] showed
that vanilla CNN detectors, based on Xception [3] or
DenseNet [9] backbones, perform poorly with low-
resolution deepfakes. To address this issue, they pro-
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posed an ensemble of three Shallow Convolutional
Networks with different layer configurations, effec-
tively handling various input image resolutions. Sim-
ilarly, Afchar et al. [1], argued that microscopic im-
age analysis based on image noise is not suitable
for compressed images, where the noise induced by
the deepfake generation process is strongly degraded,
and similarly, that the analysis of high-level seman-
tics is also unsuitable due to the subtle appearance
differences between real and fake images. There-
fore, an intermediate approach was proposed, where
a neural network classifies images based on meso-
scopic features, a mid-level image representation.

Although discriminative detectors perform well in
detecting forgeries, when they are tested with the
same type of deepfakes that was also used for train-
ing, their performance tends to deteriorate, when ap-
plied to deepfakes created using a previously unseen
method. This generalization issue is also generally
considered as one of the main problems of modern
deepfake detectors, and the causes of the poor gener-
alization are still poorly understood.

Beyond Discriminative Detectors. The problem of
generalization was addressed in [20] by introducing
a dedicated feature extractor that incorporated spe-
cific domain-knowledge before the classifier. The
feature extractor infers task-specific and information-
rich features at multiple scales from the input image,
combining them into a discriminative representation
that is then fed to a classifier. In [4], the authors fol-
lowed a similar idea and proposed the Hierarchical
Memory Network to decide whether an image repre-
sents a deepfake or not. The proposed network con-
siders both the current facial content to be classified
as well as previously seen faces. Facial features are
extracted using a pretrained neural network, consist-
ing of a bidirectional GRU (Gated Recurrent Unit)
and an attention mechanism. The resulting output is
then compared to previously seen faces to make a de-
cision on whether the input face is a deepfake or not.

One of the more effective methods for improving
the generalization of deepfake detectors is the syn-
thesis of forged images, which are then used together
with real/pristine face images to train discriminative
detection models. These so-called pseudo-deepfake
methods are in essence learned from real data only
and never observe a real deepfake image. Instead,
they simulate deepfake artifacts through various aug-
mentation and synthesis strategies, leading to highly
effective detection models. Li et al. [17], for ex-

ample, proposed the Face X-ray method, which fo-
cuses on identifying image artifacts resulting from
the blending process. In the learning stage, real faces
are initially blended together to generate blended im-
ages, and a detector is then trained on these samples
to distinguish between original and blended images.
This idea was later extended in [27], where the au-
thors synthesized training samples by blending a face
back into its original frame. Because the same face
is used as the target as source for swapping, the pro-
posed self-blending process introduces very subtle
artifacts from which a deepfake detector is learned,
leading to very competitive detection performance.

Since the primary task of deepfake detectors is
to distinguish forgeries of any kind from pristine
images, solutions have also been proposed that ap-
proach the problem within a one-class anomaly de-
tection setting. In [12], Khalid et al. proposed the
OC-FakeDect method that is based on a One-Class
Variational Autoencoder. Here, the input images are
classified based on the reconstruction score obtained
through the encoder-decoder architecture. Similarly,
in [15], a one-class method, called SeeABLE, was
presented, where the model learns low-dimensional
representations of synthetic local image perturba-
tions. To detect forgeries, an anomaly score derived
from a prototype matching procedure is used.

Our Contribution. While the evolution of deep-
fake detectors, discussed above, has led to obvious
progress in detection performance and improvements
in the generalization capabilities, the characteristics
of these models that impact cross-deepfake detec-
tion performance are still underexplored. In the ex-
perimental section, we therefore study the behavior
of a representative set of existing deepfake detec-
tors in cross-dataset detection experiments and an-
alyze class activation mappings to better understand,
which image areas contribute to the detection deci-
sions. Additionally, we also explore the performance
of the detectors with a new class of deepfakes, gen-
erated with modern diffusion-based models. To the
best of our knowledge, this issues has not yet been
widely explored in the open literature.

3. Methodology

To facilitate the analysis, we select three concep-
tually distinct deepfake detectors: (i) a discrimina-
tive model based on the Xeception architecture that
learns to distinguish between real and forged images
through a binary classification problem [24], (ii) the
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High-Frequency Face Forgery Detection (HF-FFD)
method [20] that aims to improve the generalization
capabilities of discriminatively learned deepfake de-
tectors by extracting informative task-specific fea-
tures, and (iii) a pseudo-deepfake detector relying
on Self-Blended Images (SBI) [27] that learns from
pristine images only and simulates deepfake induced
artifacts for the training process through a dedicated
blending process. Details on the selected deepfake
detectors are given in the following sections.

3.1. The Discriminative Xception-Based Detector

The Xception method conceptually originates
from the family of Inception methods [10, 29–31].
Unlike traditional convolutional layers that learn fil-
ters in 3D space (two spatial dimensions and one
channel dimension), processing both the spatial and
cross-channel correlations with each convolutional
kernel, the fundamental idea of Inception modules
is to divide this process into multiple operations that
independently handle the mapping of these corre-
lations. Specifically, in Inception modules, cross-
channel correlations are first computed using 1 × 1
convolutional filters, followed by all other correla-
tions using 3 × 3 convolutions. If we simplify the
module by omitting the average pooling tower and
reformulate the architecture as one large 1 × 1 con-
volutional layer followed by 3 × 3 convolutions, we
get a streamlined version of the Inception layer. Tak-
ing this idea to the extreme by mapping spatial cor-
relations for each output channel, we get a mod-
ule very similar to depthwise separable convolution.
Xception is a convolutional neural network architec-
ture that replaces Inception modules with depthwise
separable convolution layers, assuming that mapping
cross-channel correlations and spatial correlations in
the feature maps of a convolutional neural network
are completely decoupled. The proposed architecture
consists of 36 convolutional layers structured into 14
modules, each with a linear residual connection (ex-
cept the first and last). At the end, there is logis-
tic regression and an optional fully-connected layer.
The first detector used in this work uses the Xception
model to learn a discriminative deepfake detector.

3.2. High-Frequency Face Forgery Detection

Luo et al. [20] identified that face manipulation
procedures generally consist of two stages: fake face
creation and face blending. Since only the facial part
is altered in the image while the background remains
the same, the blending stage disrupts the original data

distribution, and this characteristic discrepancy can
be utilized for forgery detection. As a result of this
observation, the authors proposed a method that em-
ploys both RGB spatial features and high-frequency
noises for detecting forgeries. The pipeline com-
prises three parts: the entry, middle, and exit flows.
The input image is first converted into a residual
image Xh using SRM filters [5]. The entry flow
takes both the RGB image X and the residual image
Xh, performing convolution on both to obtain feature
maps F 1 and F 1

h . To extract more high-frequency
information, an SRM followed by a 1 × 1 convolu-
tion is applied to F 1

h , resulting in F̃ 1
h . This result is

then added to F 1
h , and the operations are repeated.

The output of the entry flow consists of feature maps
of two modalities, where the high-frequency Fh car-
ries much more information than the input Xh. The
output spatial feature map F is element-wise mul-
tiplied with an attention map M obtained from the
residual image as: M = fatt(Xh), where fatt is an
attention block, inspired by CBAM [37]. In the mid-
dle flow, feature maps of two modalities are fed into
a dual cross-modality attention module (DCMA),
which captures dependencies between low-frequency
textures and high-frequency noises. Each input is
divided into two components: a value, representing
domain-specific information, and a key, measuring
the correlation between these two domains. In the
exit flow, high-level features of the two modalities
are merged. Classifier training to distinguish be-
tween genuine and forged images can then be per-
formed on these obtained features. In this work, we
again use the Xception [3] model to learn a deepfake
detector over the extracted features.

3.3. Self-Blended Images [27]

The third approach considered for our analysis
[27], i.e, Self-Blended Images, falls into the cate-
gory of detectors that address the generalization is-
sue by generating synthetic forgeries, on which a
discriminative detector is learned. Typically, these
methods synthesize training samples by blending two
distinct faces and generating artifacts based on the
gap between source and target images. In con-
trast, this method performs blending of a slightly
altered version of the same face, actively generat-
ing artifacts with selected transformations. The so-
caleld Self-Blended Images (SBIs) are generated in
three steps. First, the source-target generator creates
pseudo source and target images for blending. The
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Figure 2: Examples of images generated using
DiffFace. DiffFace produces convincing deepfakes
that are almost indistinguishable from real images,
e.g., see the pristine images in (e) and (g) and their
deepfakes in (f) and (h), but also leads to failure
cases in challenging scenarios, e.g., a profile view
in (a), facial occlusions, e.g., a visible border around
glasses in (b). Sometimes artifacts also remain in the
images, e.g., shadows in (c) or hair segments in (d).

input image I is initially duplicated, and both im-
ages are augmented to introduce statistical inconsis-
tencies (RGB and HSV color space values are ran-
domly shifted, as well as brightness and contrast;
the images are downsampled or upsampled). Blend-
ing boundaries in landmark mismatches are repro-
duced by resizing the source image, zero-padding, or
center-cropping, and finally translating it. Pseudo-
source and target images end up with the same size
as the original image. In the next step, the mask gen-
erator creates a grayscale mask used for blending the
previously generated images. This is done by having
a landmark detector first determine parts of the face
based on which a convex hull is calculated. To in-
crease the diversity of the mask, the obtained shape
is deformed with elastic deformation and then eroded
or dilated. Lastly, the blending ratio of the source
image is determined by multiplying the mask by a
constant r ∈ (0, 1]. In the final step, the blending
of the source image Is and target image It is per-
formed with the blending mask M to generate the
self-blended image. With such synthetically gener-
ated samples, a binary classifier is then trained to
distinguish between genuine images and deepfakes.
Following [27], we also use EfficientNet-b4 [32] for
this task.

4. Experiments and results

4.1. Datasets

For the experiments, we select the FaceForen-
sics++ dataset [25], which is one of the most pop-
ular and challenging datasets publicly available for
the development and testing of deepfake detectors
in cross-deepfake type experiments. Additionally,
to make the analysis more comprehensive, we gen-
erate two novel subsets of the FaceForensics++
dataset, one based on a recent GAN-based face swap-
ping procedure, and one based on a diffusion-based
model. These two subsets also represents one of the
tangible contributions of this work. Below, we pro-
vide details on the FaceForensics++ dataset and the
novel InsightFace and DiffFace subsets.
FaceForensics++. For the training and testing of
models, we utilize the FaceForensics++ dataset [25],
which comprises 1000 videos. These videos are di-
vided into three groups: 720 for training, 140 for
validation, and 140 for testing. The dataset is par-
titioned into several subsets that are generated using
5 distinct deepfake-generating methods: Deepfakes1,
Face2Face [35], FaceShifter [16], FaceSwap1, and
NeuralTextures [34]. These deepfakes are created
using predefined target and source face pairs and
are mostly based on methods relying on Generative
Adversarial Networks (GANs). Additionally, each
group includes authentic, unaltered videos. We aug-
ment the dataset with two additional subsets. The
first uses the InsightFace [7] face swapping proce-
dure, and the second the diffusion-based DiffFace ap-
proach from DiffFace [13]. Because deepfakes based
on diffusion models have so far not been widely dis-
cussed in the literature and no relevant datasets are
available in the literature, we discuss the generated
DiffFace subset of FaceForensics++ (FF++) in a sep-
arate section below.
The DiffFace FF++ Subset. We structure the Diff-
Face Subset in the same way as all others from the
FaceForensics++ collection: it consists of frames
from 1000 videos, divided into training, validation,
and test sets, with only every tenth frame processed
for each recording. Forged images generated us-
ing the DiffFace approach are highly convincing and
difficult to distinguish from authentic ones at first
glance. In Figures 2e to 2h, we see that the generated
deepfake can even look more convincing than the
original images. However, the method yields poorer

1https://github.com/deepfakes/faceswap
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Train set Test set - AUC

Deepfakes DiffFace Face2Face FaceShifter FaceSwap InsightFace NeuralTextures

Deepfakes 0.9974 0.7018 0.8844 0.5699 0.6434 0.6130 0.9174
DiffFace 0.6111 0.9959 0.5079 0.6128 0.5151 0.6072 0.5199
Face2Face 0.9420 0.6475 0.9903 0.6946 0.6562 0.5316 0.8106
FaceShifter 0.6533 0.9368 0.5197 0.9969 0.5161 0.6156 0.5696
FaceSwap 0.6647 0.6928 0.8608 0.5050 0.9955 0.5361 0.7730
InsightFace 0.6981 0.6473 0.5851 0.8027 0.5473 0.9298 0.6535
NeuralTextures 0.9931 0.6765 0.9497 0.7302 0.6847 0.5516 0.9862

Table 1: Performance of Xception trained on different databases in cross-dataset scenario.

(a) (b) (c) (d)

Figure 3: Grad-CAM analysis of the last convolu-
tional layer of the Xception network. The model
trained on Deepfakes (a), Face2Face (b), and Neu-
ralTextures (c) databases typically activates in the re-
gions around the eyes, mouth, and nose. The classi-
fier trained on deepfakes from the DiffFace database
(d) typically activates in a circular pattern.

results when faced with more challenging scenarios,
such as under face orientations that cause the face to
be partially visible (e.g., a profile view in Figure 2a)
and various occlusions on the face (e.g., glasses in
Figure 2b). As the process is of a sequential stochas-
tic nature, artifacts such as shadows (in Figure 2c)
or hair segments (in Figure 2d) are sometimes trans-
ferred to the output as well.

4.2. Performance metrics

Following standard evaluation methodology [12,
15, 23] we evaluated the performance of the selected
methods based on the Area Under the Receiver Op-
erating Characteristic Curve (AUC). We also con-
duct a qualitative analysis of the results, comparing
the characteristics of images and Gradient-weighted
Class Activation Mapping (Grad-CAM) heatmaps of
samples where the methods are successful and those
where they are not [26]. We use Grad-CAM as the
primary tool for understanding the generalization ca-
pabilities of the tested detectors.

4.3. Results

Xception Results. For the evaluation, we trained
the Xception model using deepfakes generated with
one of the face forgery methods that constitute the

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Illustration of Grad-CAM depicting
the triggering regions of the last convolutional
layer of the Xception network with an added
feature-extracting pipeline: focus on the root of
the nose (Deepfakes (a)) and on the edge of the
nose (InsightFace (b)), triangular area with the cen-
ter on the mouth (DiffFace (c)), circular focus on
the philtrum (Face2Face (d) and NeuralTextures (g)),
hourglass shape (FaceShifter (e)), and truncated tri-
angle (FaceSwaps (f)), focus on the eyes in genuine
images (h). Best viewed in color.

FF++ dataset, and tested the model on the entire test-
ing set to obtain insight about the method’s perfor-
mance detecting various types of deepfakes. The re-
sults are compiled in Table 1. It is evident that the
method performs best on forgeries generated using
the same method as used for the generation of train-
ing samples. Clearly, the detector overfits to the tex-
tural errors specific to the given deepfake generation
method. Consequently, when applied to images ma-
nipulated using a different method, the detector’s per-
formance significantly decreases.

Additionally, we observe that the model exhibits
significantly better generalization across the Deep-
fakes, Face2Face, and NeuralTextures databases
compared to other types of deepfakes. These forg-
eries contain visually similar artifacts, e.g., blend-
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Train set Test set - AUC

Deepfakes DiffFace Face2Face FaceShifter FaceSwap InsightFace NeuralTextures

Deepfakes 0.9971 0.7494 0.9403 0.6615 0.5666 0.6353 0.9596
DiffFace 0.5166 0.9999 0.5302 0.5076 0.5210 0.5086 0.5294
Face2Face 0.9965 0.5277 0.9912 0.7614 0.7343 0.6638 0.9591
FaceShifter 0.7750 0.8228 0.8491 0.9987 0.7094 0.6229 0.7910
FaceSwap 0.9407 0.9897 0.9934 0.8823 0.9969 0.4995 0.9274
InsightFace 0.6896 0.7830 0.6146 0.5203 0.5447 0.9725 0.5843
NeuralTextures 0.9928 0.8561 0.9891 0.9220 0.9302 0.6603 0.9933

Table 2: Performance of HF-FFD with an Xception classifier in a cross-dataset scenario.

(a) (b) (c) (d)

Figure 5: Typical examples of artifacts that the
SBI method successfully detects: obvious blend-
ing border (a), color mismatch (b), structural incon-
sistencies (e.g., partially deleted glasses (c)), poorly
generated facial landmarks (e.g., nose (d)).

ing edges, distortions in facial landmarks, and color
mismatches. An analysis of the detector using Grad-
CAM [26] reveals that the last convolutional layer of
the method trained on one of these subsets activates
in similar regions during inference, i.e., areas around
the eyes, mouth, and nose, as seen in Figure 3a to 3c.

The results also indicate that training the detector
on diffusion-based deepfakes leads to poor general-
ization. Diffusion-based forgeries appear markedly
different at first glance and do not exhibit typical ar-
tifacts. This suggests that the detector is attentive
to entirely different features, as evident in the Grad-
CAM analysis shown in Figure 3d, i.e., the triggering
area of the last convolutional layer is typically circu-
lar, unlike any other training database.

HF-FFD Results. In this case, HF-FFD detector,
we are dealing with a discrimantive model that uses
the Xception architecture for classification and a spe-
cialized pipeline for feature extraction, as described
in Section 3.2. We conduct training and testing of
this model in the same way as with Xception. The
results are shown in Table 2. As can be seen, the
introduction of the pipeline significantly improves
generalization. However, a more in-depth analysis
using Grad-CAM is needed for a better understand-
ing. Based on Grad-CAM analysis, we can roughly
categorize the learned bases into three groups based
on the focus of the last convolutional layer: nose,

mouth, and philtrum (the area between the nose and
mouth). The network’s focus on the root of the nose
and its surroundings occurs when training the net-
work on the Deepfakes dataset. A similar focus is ob-
served when training on the InsightFace dataset, but
in this case, the center of focus is not the root of the
nose; instead, it is somewhere on the edge (tip, left or
right edge, or the top of the nose). In the case of the
DiffFace dataset, the network focuses on the mouth,
with a triangular area towards the nose. For all other
datasets, the network focuses on the philtrum area,
but they differ in the shape of the focus area. The
Face2Face and NeuralTextures datasets have a circu-
lar area similar to Deepfakes, while the FaceShifter
and FaceSwaps datasets have areas that stretch up-
ward on the face, with the former having an hourglass
shape and the latter a truncated triangle. In the case
of genuine images, the model is triggered in the eye
area, regardless of the training dataset. These focus
areas are illustrated in Figure 4.

From the results in Table 2, it is evident that the
method trained on the Deepfakes, Face2Face, and
NeuralTextures subsets also generalizes well across
those specific deepfake types. Moreover, it is also
noticeable that the triggering area of the method on
these subsets is very similar, i.e., an approximately
circular area around the focus center, with slight vari-
ations in the center’s position (Figure 4a, 4d, 4g).
However, it turns out that the method performs bet-
ter among datasets where the intersection between
the triggering areas of the network is larger. Thus,
a model trained on datasets with a larger triggering
area (FaceSwap (Figure 4f), FaceShifter (Figure 4e),
and NeuralTextures (Figure 4g)) detects deepfakes
of almost all types. In contrast, training on datasets
with a small triggering area (DiffFace (Figure 4c))
results in very poor generalization. A special case is
the InsightFace dataset, where the center and shape
of the focus are not constant/consistent. Different
spatial/semantic areas in the images seem informa-
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Model Test set - AUC

Deepfakes DiffFace Face2Face FaceShifter FaceSwap InsightFace NeuralTextures

SBI 0.9106 0.5708 0.8715 0.7922 0.7851 0.5892 0.8430

Table 3: Performance of EfficientNet-b4 fine-tuned using self-blended images tested on deepfakes created with
seven different approaches. Results are shown in terms of AUC.

tive for the method in these types of deepfakes ar-
eas in the images seem informative for the method in
these types of deepfakes. Consequently, when rec-
ognizing forgeries of other types, we correctly detect
only those images with a similar informative defect,
which is evident in Grad-CAM heatmaps by the cen-
ter and shape of the focus approximating the typi-
cal focusing area of this dataset. However, detection
with these subsets also results in many false nega-
tives, as in cases where the network focuses on the
top of the nose, it closely resembles the focus of a
genuine image (which typically focuses on the eye
area). Slightly better performance is achieved only
when testing on the DiffFace dataset, as the samples
of these two datasets are the most similar, which is
why we often obtain a triangular area at the base of
the nose that closely resembles the triggering area in
the DiffFace dataset.

Self-Blended Images (SBI) Results. This method
relies solely on pristine images from the training
dataset, eliminating the need for deepfakes in the
training dataset. To evaluate its performance, we
conduct tests using a pre-trained model that was
trained, as described in the paper [27]. The results
are summarized in Table 3. This technique utilizes
only authentic images to generate pseudo-deepfakes
for training the detector. This unique approach en-
ables the direct determination of specific artifacts on
which the detector should focus. The authors of this
approach categorize these artifacts into four groups:
landmark mismatch, blending boundary, color mis-
match, and frequency inconsistency. The results in-
dicate that the method performs comparably well in
recognizing forgeries of all types where the same ar-
tifacts that were synthesized on training images are
present. The method achieves its highest success
rates on samples from the Deepfakes dataset (Fig-
ure 5a) and Face2Face dataset (Figure 5b), where the
injected artifacts are most conspicuous. The method
is also effective in detecting structural inconsisten-
cies (e.g., partially deleted glasses in Figure 5c) and
poorly generated facial landmarks (e.g., nose in Fig-
ure 5d). However, the method’s performance signif-

icantly declines when confronted with forgeries that
do not contain the artifacts present in the training set.
It notably struggles with forgeries from the DiffFace
and InsightFace datasets. In the latter, the method
focuses primarily on areas that appear to have been
smoothed during the forgery process. However, this
is not precise enough, leading to misclassification
of many genuine images as deepfakes. Forgeries
from the DiffFace dataset present a unique challenge
as they do not exhibit typical errors due to a dif-
ferent generation approach. Consequently, a clas-
sifier trained on pseudo-deepfakes with typical arti-
facts faces difficulty distinguishing these forgeries.
This approach successfully mitigates the problem of
overfitting to a specific deepfake generation method.
However, the issue of generalization is then shifted to
the level of selecting transformations during the syn-
thesis of training samples. This directly influences
what the classifier will decide upon during classifi-
cation, meaning that in the presence of new types
of forgeries expressing different defects, the detector
may not successfully identify them.

5. Conclusion

In this paper, we analyzed three face forgery de-
tection methods, evaluating them in a cross-dataset
scenario and assessing generalization. Using Grad-
CAM, we examined failure cases and observed that
discriminative models like Xception generalize pri-
marily among forgeries with similar textural arti-
facts, while models with a feature-extracting pipeline
before the classifier demonstrated improved general-
ization when trained on datasets that induce larger fo-
cus areas in the final convolutional layer. Classifiers
trained with pseudo deepfakes proved effective only
when artifacts assumed during training sample gen-
eration also appeared in the forgeries. Future work
will expand the analysis to a broader detector set, ex-
plore aspects like the impact of image compression,
investigate the characteristics of the detection tech-
niques in the frequency domain, and assess the dis-
criminativness of learned image representations.
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Abstract

We present a method for estimating the shutter angle,
a.k.a. exposure fraction – the ratio of the exposure time
and the reciprocal of frame rate – of videoclips containing
motion. The approach exploits the relation of the exposure
fraction, optical flow, and linear motion blur. Robustness is
achieved by selecting image patches where both the optical
flow and blur estimates are reliable, checking their consis-
tency. The method was evaluated on the publicly available
Beam-Splitter Dataset with a range of exposure fractions
from 0.015 to 0.36. The best achieved mean absolute error
of estimates was 0.039. We successfully test the suitability
of the method for a forensic application of detection of video
tampering by frame removal or insertion.

1. Introduction
The shutter angle, a.k.a the exposure fraction, is the ra-

tio of the exposure time, i.e. the time period a film or a
sensor is exposed to light, and the time between two con-
secutive frames, i.e. the reciprocal of the frame rate. The
shutter angle determines the relation between object motion
and image blur and thus influences viewer perception. This
has been used in film-making as part of artistic expression
and tutorials and websites are devoted to explaining the ef-
fect [6]. In computer vision and image processing, exposure
fraction affects methods for temporal super-resolution and
video frame interpolation, since the inserted images need to
both interpolate motions and reduce motion blur.

For analog cameras, the exposure fraction remains con-
stant throughout the duration of the video. In digital cam-
eras, the exposure time and thus the shutter angle may be set
dynamically, according to illumination intensity. Neverthe-
less, for most recorded videos it stays constant. For global
shutter cameras, it is the same for every pixel of a frame.
For rolling shutter cameras the same is true for horizontal
motions; the exact modeling is more complex for vertical
motions.

The exposure fraction provides a physics-based con-

straint that influences every pixel, and it thus has the po-
tential for the detection of fake videos and local image ed-
its. Violations of the constraint – the linear relationship be-
tween the local motion blur and optical flow with the shutter
angle providing the scaling constant – are not immediately
obvious to human observers, and thus might not be noticed
by neither the authors nor the viewers of the altered or syn-
thesized content. Moreover, many generators of synthetic
content are often trained on sharp images corresponding to
very short exposures or on graphics-generated data and thus
might not represent motion blur as required by physics.

In the paper, we present a robust method for the esti-
mation of the shutter angle that relies on explicitly run-
ning a state-of-the-art optical flow algorithm [11] and linear
blur kernel estimator [2]. We are not aware of any exist-
ing method for shutter angle estimation from unconstrained
video sequences. Barber et al. [1] formulate the problem for
sequences containing only specific types of blur. We are the
first to address the problem for sequences containing gen-
eral motion.

In summary, we make the following contributions. The
proposed method is novel, exploiting recent progress in
deep optical flow and linear blur estimation. Both of these
estimates are dense, permitting to achieve robustness by
combining predictions from patches where both estimates
are reliable and consistent. We show a forensic application
of the method, considering detection of video tampering by
frame removal or insertion.

2. Related work
The problem of estimating the shutter angle of a video-

clip has been approached from the point of view of precisely
measuring camera characteristics with the help of a bespoke
setup. The method of Simon et al. [8] relies on special de-
vices, such as turntables, CRT displays or arrays of LEDs
lit in specific patterns. Barber et al. [1] addressed the prob-
lem for sequences containing blur induced by either zoom
or camera rotation during exposure.

We formulate the problem of estimating video shutter an-
gle with the use of optical flow and linear blur kernel esti-
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mates from a general video clip containing motion. Meth-
ods for estimating linear blur parameters [2, 10, 13] of-
ten rely on deep neural networks trained on synthetically
blurred images. Typically, they serve as an intermediate
step towards image or video frame deblurring. While the
details of particular implementations differ, the output is
generally a set of estimated parameters of linear blur ker-
nels.

Similarly, the topic of optical flow estimation has seen a
lot of progress with methods such as Teed and Deng [11]’s
RAFT. Optical flow methods seek to estimate pixel dis-
placements between consecutive frames, and as of recently,
are based on various deep neural network architectures. As
obtaining ground truth of optical flow on real-world data is
difficult, these methods are trained on synthetic datasets.

3. Method

The proposed method for shutter angle estimation re-
lies on the calculation of dense optical flow, described in
Sec. 3.1, and linear blur, described in Sec. 3.2. The shut-
ter angle is the ratio of the length of blur and optical flow
vectors (Sec. 3.4) if the direction of motion does not change
within the exposure time, thus not all parts of the image are
suitable for estimating this ratio. For instance, both esti-
mates of the blur and the optical flow will be unreliable in
parts of the image that contain the sky or similar smooth-
texture surfaces. In Sec. 3.5 we describe our algorithm for
the selection of patches suitable for shutter angle estimation.

3.1. Optical flow model

Optical flow is conventionally defined as per-pixel mo-
tion between video frames. Given 2 consecutive video
frames Fi and Fi+1, the goal of optical flow estimation
methods is to map the position (xi, yi) of a given pixel
in frame Fi to its position (xi+1, yi+1) in frame Fi+1.
This mapping can be modeled as a dense displacement field
(f1, f2). The position of a given pixel in frame Fi+1 can
be then described as (xi + f1(xi), yi + f2(yi)) [11]. In
this paper, we employ Teed and Deng’s RAFT [11] for op-
tical flow estimation, selected for its well-documented per-
formance across various sequences [11] and strong bench-
mark results [12].

3.2. Linear blur model

The heterogeneous motion blur model commonly views
the blurred (real) image Y as the product of a convolution
of a sharp image X with an operator K and additive noise
N [2].

Y = K ∗ X+N (1)

The motion blur kernel map, K, in general, consists of dif-
ferent blur kernels for each pixel at position (x, y).

The linear blur assumes the kernels at (x, y) can be mod-
eled as 1D, in the direction of the local motion. Such kernels
can also be interpreted as two-dimensional motion vectors
Kx,y = (k1

x,y,k
2
x,y). Linear blur kernels also character-

ize the motion of a pixel over the camera exposure time ε, as
the blurring occurs by motion during camera light capture
over the exposure period.

The assumption of linear blur is violated e.g. for hand-
held cameras that may undergo Brownian-like motions. In
such cases, the estimation of both blur kernels and opti-
cal flow is difficult and they present a challenge for our
method. Since the exposure fraction is the same for all pix-
els in the image, it is sufficient to find a modest number of
areas where the linear blur assumption holds, e.g. on a lin-
early moving object in the scene. In Sec. 3.5, we introduce
techniques for identifying and selecting such areas of video
frames.

In this paper, we apply the method of linear blur esti-
mation by Gong et al. [2], which shows both good gener-
alization ability and dataset performance. It is also one of
the only methods that perform per-pixel estimates of blur
kernels, i.e. the estimates are calculated, not interpolated
from patches, in full resolution. This method, however, in-
troduces a level of discretization error, as the deep neural
network used for estimating blur kernels operates as a multi-
class classifier with a discrete output space. We attempt to
minimize the effect of such errors on our final estimate as
described in Sec. 3.5.

During testing, we also evaluated the performance of
Zhang et al.’s method [13] as it operates with a real out-
put space but found that in our set up it performed worse
than Gong et al.’s method [2].

3.3. Shutter angle from linear blur and optical flow

We consider a video camera with the following param-
eters. Let ε denote the exposure time of each frame, f the
video framerate in frames per second and θ the video shut-
ter angle in degrees. For the i-th video frame, we define ti
as the time of exposure start and ti + ε as the exposure end.
The time difference between exposure starts of two consec-
utive frames, ∆t = ti+1 − ti = 1/f = f−1, is equal to the
reciprocal of the frame rate f .

For the purpose of simplicity, we use the exposure frac-
tion notation, rather than the shutter angle, i.e. instead of
180◦ we speak of 0.5. The degree notation is widely used
in cinematography, as it originates from the construction of
historical cameras that utilized mechanical rotating shutters
to set the exposure time ε. In many modern digital cameras,
exposure time ε can be set explicitly. We define exposure
fraction α as the ratio

α =
ε

∆t
=

θ

360◦
. (2)
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3.4. Estimating the exposure fraction

Consider optical flow described in Sec. 3.1 and linear
blur kernel described in Sec. 3.2. The magnitude of the
optical flow vector ∥fx,y∥ is equivalent to the distance dis-
placed by pixel over the duration of a single frame, i. e. over
the time interval of length ∆t. Similarly, the magnitude of
linear blur kernel ∥Kx,y∥ corresponds to the distance dis-
placed by pixel (x, y) over the time interval ε. Here, we
assume uniform motion, i. e. the pixel at (x, y) is travel-
ing at a constant velocity vx, y between consecutive frames.
Such assumption is reasonable, as the absolute frame dura-
tion ∆t of video clips shot at multiple frames per second is
often negligible compared to camera motion or motion of
common objects. Under this assumption, we may express
the norm of optical flow vector and linear blur kernel as
distance displaced by pixel (x, y) at constant velocity vx, y
over respective time intervals.

∥fx,y∥2 = vx, y ·∆t, ∥Kx,y∥2 = vx, y · ε (3)

We substitute in Eq. (2) and obtain the following

αx, y =
∥Kx,y∥2
∥fx,y∥2

; (4)

i.e. given the magnitude of the optical flow fx,y and
linear blur kernel Kx,y at pixel (x, y) the value of α at
position (x, y) as a ratio of magnitudes of the two vectors.

3.5. Computation

The proposed method for estimating the value of α
builds on Sec. 3.4. As described in Sec. 1, modern video
cameras operate either in a global shutter mode, where all
pixels of the frame get exposed at the same point in time or,
more commonly, in a rolling shutter mode, where exposure
is performed row-wise. In both cases, the time of exposure
ε remains constant for all pixels in the frame. Similarly, the
time interval between exposures of pixels (both global and
rolling shutter) remains constant. As a result of these physi-
cal constraints, the value of α must be consistent in an entire
frame, and typically in the entire video clip. Therefore, the
problem of estimating the value αx, y pixel-wise is reduced
to estimating one global value αglob for the entire video clip.

As the sources of both optical flow and linear motion
blur are not robust and prone to errors in their estimates,
and the condition of motion in a single direction during
exposure time may not be satisfied, the proposed method
locates patches of pixels with the lowest error potential in
both linear blur kernels and optical flow. We define multiple
constraints and show that are effective in filtering erroneous
predictions.

First, we discard estimates at all positions (x, y), where
the angle between the linear blur kernel and optical flow
vectors exceeds a threshold. The condition is evaluated in

ε (ms) 1 2 3 8 16 24

α 0.015 0.030 0.045 0.120 0.240 0.360

Table 1. Exposure fractions of BSD subsets based on exposure
time ε. All videoclips have a framerate f = 15 FPS, ∆t = 0.066 s

the cosine domain which avoids wrap-around effects and
also addresses the problem that the blur kernel is estimated
modulo π, it does not have a direction:

| ⟨fx,y|Kx,y⟩ |
∥fx,y∥2 · ∥Kx,y∥2

≥ cosφ (5)

where φ is the maximum angle threshold in degrees; ⟨·|·⟩
denotes the dot product.

Second, for Eq. (4) it follows that the norm of the ground
truth optical flow vector is always larger than the norm of
the ground truth linear blur kernel – a pixel cannot be phys-
ically captured for a longer period than the maximum inter-
frame period ∆t. We therefore remove all values from po-
sitions (x, y) where:

∥Kx,y∥2 > ∥fx,y∥2 (6)

The blur kernel estimation method [2] outputs values in
a discrete domain, with the discretization error introduced
in both vertical and horizontal directions equal to 1. This
renders predictions with small motions arbitrarily, and we
thus remove positions with small flow and blur magnitudes:

∥Kx,y∥2 ≤ 1, ∥fx,y∥2 ≤ 1 . (7)

Next, we find a D x D patch that contains the highest
number of valid positions. The value of α for a given frame
is estimated from this patch. We calculate the estimate of
α = αpatch for the current frame as the ratio of norms of
means of linear blur kernels and optical flow vectors

αpatch =

∥ 1
N

N∑
i=1

Kxi,yi
∥2

∥ 1
N

N∑
i=1

fxi,yi
∥2

(8)

where N is the number of valid positions (x, y) inside of
the selected patch.

Finally, we calculate αglob as the median of estimates of
all individual frames

αglob = med{αpatch1 , αpatch2 , ..., αpatchN } (9)

where N is the number of frames in the video clip.
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ε (ms) 1 2 3 8 16 24 Average

D φ

10 3◦ 0.058 0.034 0.035 0.024 0.048 0.091 0.049
10 5◦ 0.054 0.030 0.033 0.025 0.052 0.095 0.048
10 7◦ 0.051 0.030 0.032 0.026 0.055 0.096 0.048

20 3◦ 0.054 0.033 0.031 0.023 0.041 0.080 0.044
20 5◦ 0.048 0.029 0.029 0.022 0.042 0.081 0.042
20 7◦ 0.046 0.029 0.029 0.026 0.043 0.082 0.042

30 3◦ 0.054 0.033 0.031 0.022 0.038 0.077 0.042
30 5◦ 0.047 0.028 0.028 0.020 0.035 0.075 0.039
30 7◦ 0.045 0.029 0.029 0.025 0.034 0.072 0.039

Table 2. BSD dataset - mean absolute error of exposure fraction α̂ estimates for a range of patch sizes D and the tolerated angular
difference φ between the optical flow and blur directions. The best results, in bold, were achieved for the largest window size and angular
tolerance of 5-7 ◦.

4. Experiments and evaluation
In this section, after presenting the values of the two pa-

rameters of the proposed method - the patch size D and the
angular threshold φ, we perform testing on a public dataset
and in-depth experiments on individual video clips. We in-
vestigate both well-performing video clips and failure cases
in an attempt to find the limitations of the proposed method.

4.1. Parameter selection

We tested all configurations with patch sizes of D =
{10, 20, 30} and angular constraints, φ = {3◦, 5◦, 7◦}.
For optical flow estimates, we utilized RAFT model [11]
pretrained on the Sintel dataset with 12 iterations per two
consecutive frames. The results are summarized in Tab. 2.

4.2. Evaluation datasets

Finding a suitable dataset was difficult, as the exposure
time data is often erased from video clip metadata or not
saved by the video camera at all. Many popular video
datasets such as GoPro [7] or DeepVideoDeblurring Dataset
[9] are either stripped of this information or are available as
individual frames, converted post-capture with camera de-
tails unavailable.

The largest public dataset containing exposure time data
for every video clip is the Beam-Splitter Dataset (BSD)
[14]. The Beam-Splitter Dataset consists of pairs of identi-
cal videoclips captured with different exposure settings by
2 independently controlled cameras. Due to the framerate
f being known, we are able to calculate the ground-truth
of α for each videoclip. We test on the full 600-videoclip
dataset. Exposure parameters for each subset are in Tab. 1.
There are 100 videoclips in each distinct subset. We used

this dataset for quantitative testing as well as qualitative re-
sults on well-performing video clips and failure cases.

4.3. Estimation of exposure fraction on the BSD
dataset

We performed quantitative evaluation on all subsets of
the BSD dataset for all parameter combinations mentioned
in Sec. 4.1. We use Mean Absolute Error (MAE) as the
performance measure:

MAE =
1

N

N∑

i=1

|α− α̂i| (10)

Results are presented in Tab. 2. We observe a mild pos-
itive relationship between method accuracy (MAE) and the
increasing size of selected patches D. Testing also shows
that a more relaxed cosine constraint φ leads to a lower error
for all fixed patch sizes. We attribute this to the property of
the adopted linear blur estimation method, which occasion-
ally produces results with a correct magnitude but incorrect
orientation or vice versa, further amplified by its discrete
output space [2].

The estimated α̂ is less accurate for very small and very
large values of the true exposure fraction α. Analysis of the
behavior is a part of our future work. We conjecture that
for very low values of α, the discrete estimates of blur are
highly inaccurate. For large values of α, the optical flow,
operating on blurred images, is possibly losing accuracy.

Fig. 1 and Fig. 2 show the distribution of α̂ from a test
with parameters φ = 5◦, D = 30. Larger levels of noise
are present in the estimates of α < 0.1. This supports our
conjecture that the accuracy of linear blur kernel estimation
on very small values of α is rather low. For values α > 0.1,
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Figure 1. Histograms and box plots of α̂ estimates on clips from the BSD dataset with ε = {0.001 s, 0.002 s, 0.003 s}. Estimation
parameters φ = 5◦, D = 30. Note that only the (0, 0.2) range is displayed.
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Figure 2. Histograms and box plots of α̂ estimates on clips from the BSD dataset with ε = {0.008 s, 0.016 s, 0.024 s}. Estimation
parameters φ = 5◦, D = 30. Note that only the (0, 0.4) range is displayed.

we observe the majority of estimates within close intervals
of ground truth values. The dependency of estimation accu-
racy on the ground truth value of α is the largest limitation
of the method.

4.4. Qualitative analysis of results on BSD dataset

From the estimates performed with parameters φ = 5◦,
D = 30 detailed in Fig. 1, Fig. 2, we selected two videoclips
for in-depth analysis in an attempt to further compare the
values of linear blur kernel estimates and optical flow, and
their effect on per-frame estimates of α.

As an example of the ideal case, we selected videoclip
no. 16 from the BSD-16ms subset. The estimated value
α̂ = 0.22; ground truth α = 0.24. In Fig. 3, we display
frames F38, F39, the patch selected by the method, and de-
tailed visualization of both linear blur kernel estimates and
optical flow vectors. In this ideal case, we observe near-
perfect collinearity of linear blur kernels and optical flow

vectors, as well as relatively uniform magnitudes of both
vectors. We attribute the good performance of both linear
blur kernel estimation and optical flow to the largely linear,
lateral motion of the camera and the presence of areas with
blurred textured surfaces in the scene. Similar situations
with camera motion are ideal for the utilized linear blur ker-
nel estimator, as Gong et al.’s method [2] was trained on
synthetic data modeled as blur by camera motion.

We also analyze an example of a failure case in Fig. 4
where the estimate α̂ is grossly erroneous (ground truth
α = 0.015, estimate α̂ = 0.065). Here, we observe an
incorrectly estimated magnitude of linear blur kernels, re-
sulting in an overestimate of α. The method of [2] seems
to fail in dark areas with low contrast and no pronounced
textures. As discussed in Sec. 4.3, the linear blur kernel
estimator does not estimate low levels of motion blur accu-
rately. In consequence, the method often fails to produce
accurate estimates for ground truth values of α < 0.1.
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(a) Video frame F38, selected patch highlighted in red. (b) Video frame F39

(c) Linear blur kernels inside and around the selected patch. (d) Optical flow between F38, F39 inside and around the selected patch.

Figure 3. Example patch with nearly perfect agreement with the assumption expressed by Eq. (4). The blur kernel and optical flow
estimates are collinear, α̂patch = 0.26 and α = 0.24. The selected patch from frame F38, video clip no. 16 from BSD-16ms subset.
Estimation parameters φ = 5◦, D = 30.

Clip # k α α̂ α′ α̂′ Abs. error

78 3 0.360 0.349 0.120 0.117 0.003

14 3 0.240 0.230 0.080 0.075 0.005

115 2 0.120 0.121 0.060 0.054 0.006

Table 3. Detection of video clip subsampling by integer factor k.
The ground truth α and estimated α̂ on the original sequence and
the GT α′ and the estimated α̂′ exposure fractions on the tam-
pered video. In all cases, the value of α̂′ was estimated accurately.
The test was performed on videoclips 78 (BSD-24ms), 14 (BSD-
16ms), and 115 (BSD-8ms) containing traffic and moving vehi-
cles. Estimation parameters φ = 5◦, D = 30.

4.5. Detection of video alteration by frame deletion

Video frame deletion is a form of video clip tampering
that directly affects the temporal consistency introduced by
the camera physical properties and its exposure mechanism.
When consecutive video frames are deleted, objects in the
scene exhibit progressively larger inter-frame motions, pro-

portionally to the number of removed frames, yet the mo-
tion blur remains the same. If the time scale, i.e. the play-
back frame rate, is edited or ignored by the player, the re-
played video will appear to the viewer to have faster mo-
tions. As a result of frame deletion, the estimated value of
α will not be consistent with the original video clip; the
tampered section will have values of the α different from
the rest of the video.

Frame deletion and insertion may be used for malicious
purposes in video clips where the speed of motion provides
significant information value, such as video clips from auto-
motive dash cameras that could be used for speed measure-
ments. Similarly, it may be utilized to remove frames con-
taining sensitive or identifying information, such as license
plates or faces on footage from surveillance cameras. In the
case of dash and surveillance cameras, the capture framerate
f and ε are often available as camera metadata, allowing a
comparison between altered video clips and ground truth α.

We selected three video clips of scenes containing traf-
fic and moving vehicles with α > 0.1. This choice was
based on the fact that the method performs better on larger
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(a) Video frame F52, selected patch highlighted in red. (b) Video frame F53

(c) Linear blur kernels inside and around the selected patch. (d) Optical flow between F52, F53 inside and around the selected patch.

Figure 4. A failure case of linear blur kernel estimates in a dark, low contrast area with no texture; α̂patch = 0.065, α = 0.015. The linear
blur kernel estimator fails to accurately model the blur magnitudes, resulting in an inaccurate estimate of α̂patch. Since the kernels still
satisfy the orientation and magnitude constraints defined in Eq. (5), Eq. (6), Eq. (7), they are considered valid. Similar situations remain
challenging for both the linear blur kernel estimator and the method. Frame F52, estimation parameters φ = 5◦, D = 30. Video clip no.
74 from BSD-1ms subset.

values of α due to the limitations of the linear blur esti-
mator. For each of the selected video clips, we performed
frame subsampling with an integer factor k, i.e. every k-th
frame was preserved; the intermediate frames were dis-
carded. The new apparent ground truth value of α′ = α

k
where α is the ground truth value of the source video clip.
The results are displayed in Tab. 3. For all subsampled
videoclips, the method produced estimates within a close
margin of the apparent ground truth value. Note signifi-
cantly lower error than on video clips where unmodified
α = {0.015, 0.030, 0.045}. We attribute this to more accu-
rate estimates in the selected videoclips, as their unmodified
α = {0.120, 0.240, 0.360} results in larger motion blur
and therefore more accurate linear blur kernel estimates.

4.6. Detection of video alteration by frame interpo-
lation

Video frame interpolation is a technique of temporal al-
teration that synthesizes new intermediate frames in order to
increase video framerate and for motion to appear smoother.

Clip # Interpolation factor α α̂ α̂′

78 2x 0.360 0.349 0.668

4x – – 0.536

14 2x 0.240 0.230 0.412

4x – – 0.562

Table 4. Detection of video clip interpolation. The ground truth
α and estimated α̂ on the original sequence and the estimated α̂′

exposure fractions on the tampered video. In all cases, the value
of α̂′ increased noticeably. The test was performed on videoclips
78 (BSD-24ms) and 14 (BSD-16ms) containing traffic and moving
vehicles. Estimation parameters φ = 5◦, D = 30

It may be followed by a change of playback timescale, in
which case it results in a slow-motion video. A videoclip
altered in such a way can then be used as fake evidence of
vehicle speed from a surveillance or dash camera. Tech-
niques derived from video frame interpolation may also be
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used to add new content to videos or change their appear-
ance, such as interpolation between still photographs of a
person’s face for the creation of so-called ”deepfakes” [3].
As described in Sec. 4.5, surveillance or dash cameras of-
ten save the value of ε and f by directly imprinting it on
video frames or by saving it to the metadata. This provides
the ground-truth value of α for comparison with the method
estimate.

Based on the definition of exposure fraction α (Sec. 3.3),
it is expected its value to increase if the newly-synthesized
intermediate frames reduce the inter-frame motion of ob-
jects without affecting the amount of motion blur, i.e. the
newly synthesized frames appear as blurry as the source
frames. It is, however, not possible to compute the value
of α′ of interpolated videoclips accurately, as modern deep
neural network-based interpolation methods such as RIFE
[4] do not perform parametrized blurring or deblurring.

We performed interpolation on videoclips no. 78 and
14 from the experiment in Sec. 4.5 with the state-of-the-art
RIFE method [4]. For each videoclip, we tested 2x interpo-
lation and 4x interpolation. Results are presented in Tab. 4.
We observe an increase in estimates of α′ in all cases of in-
terpolation, pointing to the method synthesizing new frames
with similar amounts of motion blur as the source.

5. Further applications

In applications concerning video frame interpolation and
video frame deblurring, the value of α might help parame-
terize blur for more accurate deblurring or motion model-
ing. The synthetization of new frames from a blurry source
remains a challenge for modern interpolation methods, and
accurate blur modeling might provide the necessary infor-
mation for performance improvements [5]. In the case of
linear blur estimates and optical flow, the estimate of α is
useful as a complement in computing values for positions
(x, y) where one of the methods failed (under the assump-
tion that is it possible to estimate the value of α from other
frames and positions in the videoclip). This might be useful
for the creation of new datasets for linear blur kernel esti-
mation or optical flow, as the parameters may be estimated
from existing datasets and computed for entire frames or
videoclips.

6. Conclusion

We proposed a novel method for estimating the expo-
sure fraction based on dense optical flow and linear blur
estimates. The method was evaluated on the publicly avail-
able BSD Dataset. The mean absolute error was 0.039;
the method performed best in the range (0.12, 0.36). We
observed reduced accuracy for ground truth values below
0.1, leading us to conjecture that the use of discrete lin-
ear blur kernel estimates may be a limiting factor. De-

veloping an improved method for the estimation of lin-
ear blur kernels is a key part of our future work. Lastly,
we presented a possible application of exposure fraction
estimation for video tampering detection, specifically of
frame deletion and frame insertion. The implementation
is available at https://github.com/edavidk7/
exposure_fraction_estimation.
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Abstract. We introduce a novel method for measur-
ing the speed of periodic events by an event cam-
era, a device asynchronously reporting brightness
changes at independently operating pixels. The ap-
proach assumes that for fast periodic events, in any
spatial window where it occurs, a very similar set
of events is generated at the time difference corre-
sponding to the frequency of the motion. To estimate
the frequency, we compute correlations of spatio-
temporal windows in the event space. The period
is calculated from the time differences between the
peaks of the correlation responses. The method is
contactless, eliminating the need for markers, and
does not need distinguishable landmarks. We eval-
uate the proposed method on three instances of pe-
riodic events: (i) light flashes, (ii) vibration, and
(iii) rotational speed. In all experiments, our method
achieves a relative error lower than ±0.04%, which
is within the error margin of ground truth measure-
ments.

1. Introduction

The measurement of properties of periodic events
has a wide applicability in diverse real-world do-
mains. For example, precise quantification of rota-
tional speed is important in many fields, ranging from
sport analysis to the assessment of rotating compo-
nents in machinery and mechanical systems across
industries such as aviation (especially drones [5]),
energy production using wind turbines [6], and mo-
tor speed testing.

Commercial devices for measuring periodic event
properties, like traditional contact tachometers [4] or
rotary encoders used for measuring rotation speed,
necessitate direct contact with the observed object.
These approaches interfere with the target’s move-
ment, as additional equipment must be in contact
with the observed object.

Figure 1: The proposed method: (i) data captured
from an event camera is aggregated into N non-
overlapping arrays along the time axis, (ii) a Re-
gion of Interest and a template are selected, (iii) 2D
correlation of the template with arrays is computed,
(iv) and the frequency is calculated from the average
of time deltas measured between correlation peaks.

In contrast to contact measurement devices, laser
devices offer highly accurate [7], less invasive mea-
surements. However, reflective material (e.g., a
sticker) must be placed on the target, reflecting the
laser into the sensor while measuring. Under certain
conditions, this limits the application of laser devices
since it might not be convenient or even feasible to at-
tach labels to particular objects or in confined spaces
of the observed machinery. Another disadvantage is
that the device operator must aim the laser precisely
at the target, as missing the reflective material pass-
through results in an inaccurate measurement.

We propose a method that allows for non-contact
measurement of the frequency of any periodic event.
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(a) flashing LED (b) vibrating speaker (c) a felt disc with (d) a velcro disc, (e) a velcro disc captured
diaphragm a high contrast mark fronto-parallel view through a glass sheet

at a 45° camera angle

Figure 2: Experimental setup with visualisation of event camera output. Top: physical setups, bottom: events
from a 250 ms window visualised in spatio-temporal space.

The proposed method computes correlations of
spatio-temporal windows in the event space, as-
suming that the period of the periodic motion
corresponds to the time differences between the
peaks of the correlation responses (see Fig. 1). The
method is validated on experiments with periodic
events, i.e. flashing light and vibration, and periodic
motion, i.e. rotation. Our method achieves accuracy
with a relative error of ±0.04% in all our experi-
ments, which falls within the margins of error of the
ground truth.

2. Related work

In this section, we explore existing approaches and
technologies in the domain of rotation speed mea-
surement, as it is the most common periodic event.
Firstly, we delve into commercially available rota-
tion speed measuring devices with contact and con-
tactless options. Subsequently, we explore camera-
based rotation speed measurement methods. Lastly,
we investigate event-based rotation speed measure-
ment methods, examining approaches that utilise
event cameras for accurate rotational speed estima-
tion. Each subsection provides notes on the strengths
and limitations inherent in each approach.

2.1. Commercially Available Rotation Speed Mea-
suring Devices

Commercially available devices offer either con-
tact, e.g. traditional mechanical tachometers, or
contact-less rotation speed measuring, e.g. electro-
static and optical encoder tachometers, including
laser tachometers.

Mechanical tachometers are physically attached to
the target’s shaft and rotate with it to determine the

rotation speed. However, this direct physical connec-
tion introduces inaccuracies due to the mass and fric-
tion of the tachometer. Electrostatic sensors detect
changes in the electromagnetic field caused by a shaft
bearing fixed on the target, estimating the rotation
speed based on the frequency of these changes. Op-
tical encoder tachometers utilise a photoelectric sen-
sor to detect light passing through a disc between a
light source and the sensor. The disc contains opaque
and transparent segments that allow for the estima-
tion of rotation speed based on the frequency of
light changes detected by the sensor. Laser tachome-
ters measure rotation speed by using the frequency
of laser light bounces to its sensor from small and
lightweight reflective labels that must be affixed to
the target’s surface.

2.2. Camera-based Rotation Speed Measurement
Methods

Wang et al. [8] created a rotational speed measure-
ment system based on a low-cost imaging device re-
quiring a simple marker on the target. The method
involves pre-processing sequential images by denois-
ing, histogram equalisation, and circle Hough trans-
form. Subsequently, these processed images undergo
a similarity assessment method. The rotational speed
is calculated by applying the Chirp-Z transform to
the restructured signals, and the method achieves
valid measurements with a relative error of ± 1% in
the speed range of 300 to 900 revolutions per minute
(RPM).

An alternative approach [9] involved the computa-
tion of structural similarity and two-dimensional cor-
relation between consecutive frames. Subsequently,
similarity parameters were utilised to reconstruct a
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continuous and periodic time-series signal. The fast
Fourier transform was then applied to determine the
period of the signal, providing the maximum relative
error of ± 1% over a speed range of 0 to 700 RPM.

Camera-based rotation speed measurement meth-
ods offer the advantage of non-contact measure-
ments, eliminating physical attachments to the rotat-
ing object and often providing a cost-effective solu-
tion. However, the frame rate of standard cameras is
relatively low, which can constrain the range of ob-
servable rotating objects and potentially compromise
the accuracy of speed measurements, especially for
high-speed rotations.

2.3. Event-based Rotation Speed Measurement
Methods

Hylton et al. [2] introduced a technique for com-
puting the optical flow of a moving object within an
event stream, demonstrating its application in esti-
mating the rotational speed of a disc with a black-
and-white pattern. However, the algorithm’s design
lacked the sophistication required to deal with the
non-structural and noisy event stream to obtain ac-
curate measurements of high-speed rotation.

EV-Tach method [10] starts by eliminating event
outliers by estimating the median distance from
events to their centroid, flagging events with dis-
tances surpassing a specified threshold as outliers.
Subsequently, it identifies rotating objects charac-
terised by centrosymmetric shapes and proceeds to
track specific features, such as propeller blades.

Event-based rotation speed measurement methods
offer the advantage of high temporal resolution, en-
abling precise tracking of rapid rotational motion.
However, these methods may face challenges in sce-
narios where clear observable landmarks or mark-
ers on the rotating target are absent, limiting their
applicability in specific environments and necessi-
tating well-defined visual features for accurate mea-
surements or knowledge of the centre of rotation.

3. Proposed method

In this section, we introduce our method. Put sim-
ply, our method first aggregates outputs of an event
camera1 along the time axis, then computes a 2D cor-
relation of a selected template with the aggregated

1The data acquired from the event camera are represented as
a list of tuples (x, y, t, p), where x and y denote spatial coor-
dinates of the event, t the timestamp of the event, and p is the
polarity of the brightness change. The p value is −1 in a case of
brightness decrease, 1 in a case of brightness increase, and 0 in

t ∈ [50, 51) t ∈ [57, 58) t ∈ [59, 60) t ∈ [61, 62)

Figure 3: Aggregated events in a fixed time inter-
val of one millisecond for a selected Region of Inter-
est. Positive events ± white colour, negative events ±
bright blue.

data in a selected region of interest, and outputs the
average duration between peaks of correlation re-
sponses. A detailed description follows.

The Region of Interest (RoI) is a two-dimensional
square area represented by four coordinates defining
its top-left and bottom-right corners. We aggregate
events within fixed time intervals with spatial coor-
dinates within the selected RoI into two-dimensional
arrays we call event-aggregation arrays.

The aggregation procedure starts by creating a
two-dimensional array with the same size as the RoI
filled with zeros. We go through the list of events
with spatial coordinates within a chosen Region of
Interest (RoI) and timestamps within a specified time
interval. For each of these events, we modify an el-
ement in an array. The position of this element in
the array corresponds to the spatial coordinates of the
event relative to the RoI. The polarity of the event de-
termines the new value in the array.

We choose one of these event-aggregation arrays
to calculate the correlation with all event-aggregation
arrays. We refer to this selected array as a template.
Fig. 3 visualises four selected event-aggregation ar-
rays, showcasing the spatial distribution of events
within one millisecond set time intervals.

Next, we calculate correlation responses between
the template and all event-aggregation arrays. As ex-
pected, the responses have periodic peaks. When a
peak is reached, it signifies the completion of one
period of the event. An example of periodic peaks
in the correlation responses is shown in Fig. 1.

Subsequently, we compute N delta times ∆ti by
measuring the temporal differences between succes-
sive event-aggregation arrays that exhibit peaks in
their correlation responses. Each ∆ti represents the
microseconds it takes for the observed object to com-
plete one revolution or cycle of states.

a case of no brightness change larger than the defined threshold.
The list contains events with ascending timestamps.
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The RPM value based on a single revolution is
subsequently calculated using the following formula
for experiments on measuring the speed of rotating
objects.

RPMi =
106

∆ti
× 60, i = 1, 2, ..., N (1)

Ultimately, we calculate the average RPM value for
each second of data as

RPM =

∑M
i=1 RPMi

M
(2)

where M is the number of samples in one second of
data.

For the other experiments (4.1, 4.2) the frequency
ν expressed in hertz (Hz) is computed for each ∆ti
as

νi =
106

∆ti
, i = 1, 2, ..., N (3)

We then calculate the arithmetic mean frequency of
periodic movement. An overview of the method can
be seen in Fig. 1.

The σ value in Tab. 5-10 is computed as

σ =

√
σ2

M
(4)

where M is the count of measurements during the
respective time interval of 1 second and represents
the standard deviation of the average measured value.
We assume the measurements are independently
identically distributed and drawn from a normal dis-
tribution. We chose the confidence interval of 95.4%,
by which our point estimate of the mean should be
less than 2σ away from the true mean, and our point
estimate of standard deviation should be less than 2σ.

Our proposed method requires parameters that
need to be selected by the user. These parameters
are the event-aggregation duration, position and size
of the RoI and which event-aggregation array to use
as a template for calculating correlation responses.

4. Experiments

First, we present two frequency measurement ex-
periments in this section. In the first one, we measure
the frequency of the flashing diode. In the second ex-
periment, we estimate the frequency of vibration.

Then, we present three rotational speed measure-
ment experiments. In the first experiment, we mea-
sure the speed of a felt disc with a high contrast mark.

In the second experiment, we measure a disc cov-
ered by a uniform velcro material, where any pattern
is hardly observable. In these two experiments, the
event camera is in a fronto-parallel position relative
to the disc. In the third experiment, we show that
our method is accurate when the camera axis is not
collinear with the axis of rotation and points on the
rotating surface are moving along elliptical orbits in
the 2D space. Moreover, the accuracy is not degraded
when data are captured through a transparent mate-
rial for visible light. For physical setups, see Fig. 2.

For each experiment, we maintain the same light-
ing conditions and stationary position of sensors and
the observed object.

Before we dive into presenting the results of our
method, we describe both the event camera and the
ground-truth laser tachometer.

Event camera In our experiments, we used the
Prophesee EVK4 HD event camera. The camera’s
resolution is 1280x720 pixels and can capture up to
1066 million events per second [1]. The behaviour
of the camera is adjustable with five biases [3],
namely with two contrast sensitivity threshold biases
(bias_diff_on, bias_diff_off), two band-
width biases (bias_fo, bias_hpf), and with the
dead time bias (bias_refr). The contrast sensitiv-
ity threshold biases regulate the contrast threshold,
influencing the sensor’s sensitivity to changes in il-
lumination. The bias_diff_on adjusts the ON
contrast threshold, which is the factor by which the
pixel must get brighter, before an ON event occurs
for that pixel, while the bias_diff_off deter-
mines the OFF contrast threshold, which is the factor
by which the pixel must get darker before an OFF
event occurs for that pixel. Bandwidth biases con-
trol low-pass and high-pass filters, with bias_fo
adjusting a low-pass filter to filter rapidly fluctuating
light and bias_hpf adjusting the high-pass filter
to filter slow illumination changes. Dead-time bias
(bias_refr) regulates the pixel’s refractory pe-
riod, determining the duration of non-responsiveness
for each pixel after each event.

In our experiments, the camera contrast sensitivity
threshold biases were set to 20. The high-pass filter
bias was set to 50, and we kept the other biases at
their default values.

Laser tachometer To capture the ground truth
(GT) rotation speed data, the Uni-Trend UT372 laser
tachometer was used. The tachometer range is 10 to
99,999 RPM with a relative error of ±0.04%.
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(a) Selected Regions of Interest

125x125 px 45x45 px 20x20 px
(b) Templates with aggregation duration of 0.1 ms.

t=0.1 ms t=0.25 ms t=0.5 t=1 ms
(c) A template as a function of

the duration t of the aggregation time interval.

Figure 4: Setup of experiment 4.1 (see Tab. 1, 2).

PPPPPt(s)
method Ground

truth
Our method
125x125px

Our method
45x45px

Our method
20x20px

[0, 4) 2000 2000
± 0

2000
± 0

2000.54
± 0.82

Table 1: Frequency (Hz) ± 2σ (4) as a function of
the size of the Region of Interest (see Fig. 2a, 4b).

PPPPPt(ms)
method Ground truth Our method

60x60px

0.1

2000

2000
±0

0.25 2000
± 0

0.5 757.79
± 17.28

1.0 361.81
± 12.74

Table 2: Frequency (Hz) ± 2σ (4) as a function of
the aggregation time interval (see Fig. 2a, 4c).

We chose the lowest available measurement out-
put rate of 0.5 seconds and captured the measure-
ments via a USB cable. It is worth mentioning that
the optical tachometer outputs only 3 to 5 samples
per second, while our method produces a measure-
ment for each period of the observed periodic event.

The GT frequency is known for the other experi-
ments as it was manually set beforehand.

In the following subsections, we present the men-
tioned experiments and the results of our method. In
each subsection, the selection of RoI and the dura-
tion of the event aggregation are discussed, as we
hypothesised that these two parameters influence our
method the most.

4.1. Measuring periodic light flashes

In this experiment, we used a simple circuit with
a diode and Raspberry Pi controlling it (see Fig. 2a).
We used private software to precisely set the flashing
frequency and portion of the frequency period (duty
cycle) that the diode should emit light. We opted for
2000 Hz and a duty cycle of 50%.

Selection of RoI We selected three distinct Re-
gions of Interest (RoIs) with varying positions and
sizes. The first RoI covers the entirety of the flashing
diode, while the second focuses solely on its upper
half. Lastly, the third RoI is set to a smaller area
within the upper portion of the diode. The results
(Tab. 1) indicate that the precision slightly decreases
when the RoI becomes too small to cover a reason-
able area.

Selection of aggregation duration We fixed the
125x125 pixel RoI mentioned in the preceding para-
graph and conducted experiments by adjusting the
duration of the event-aggregation window. Consis-
tent with our expectations, the method fails with a
window duration exceeding 0.25 milliseconds as the
period of the captured frequency is shorter than the
aggregation duration (Tab. 2). Consequently, this
leads to nearly identical event-aggregation arrays, as
events generated from multiple LED flashes are ag-
gregated into a single array.

4.2. Measuring vibrations

In this experiment, we used a Bluetooth speaker
with two large diaphragms responsible for playing
low frequencies and an Android application allowing
us to play a specified frequency. We opted for 98 Hz,
which is equivalent to tone G2 with classic tuning A4

as 440 Hz and captured one of those diaphragms for
four seconds with the event camera (see Fig. 2b).

Selection of RoI We experimented with different
RoI positions and sizes to find the smallest RoI size
still producing accurate results. We picked three of
them for demonstration purposes (see Fig. 5a,b), with
the duration of the event-aggregation set to 0.25 mil-
lisecond. The results for four seconds of data are
presented in Tab. 3. In these four seconds, 406 in-
dividual vibrations were captured. We can see that
decreasing the RoI sizes impacts the precision only
slightly and that the method results remain accurate
even with a small RoI size.
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(a) Selected Regions of Interest

60x60 px 35x35 px 10x10 px
(b) Templates with aggregation duration of 0.1 ms.

t=0.1 ms t=0.25 ms t=0.5 t=1 ms
(c) A template as a function of

the duration t of the aggregation time interval.

Figure 5: Setup of experiment 4.2 (see Tab. 3, 4).

PPPPPt(s)
method Ground

truth
Our method
60x60px

Our method
35x35px

Our method
10x10px

[0, 4) 98 98.1
± 0.63

98.21
± 0.73

98.48
± 0.9

Table 3: Frequency (Hz) ± 2σ (4) as a function of
the size of the Region of Interest (see Fig.2b,5b).

PPPPPt(ms)
method Ground truth Our method

125x125px

0.1

98

98.39
±1.5

0.25 98.15
± 1.13

0.5 98.01
± 0.89

1.0 98.05
± 0.88

Table 4: Frequency (Hz) ± 2σ (4) as a function of
the aggregation time interval (see Fig.2b,5c).

Selection of aggregation duration We fixed the
RoI size to 60 × 60 px and set the position as in
the previous paragraph experiment. We present re-
sults from one second of data with various durations
of aggregation ranging from 0.1 milliseconds (ms) to
1 ms. From Tab. 4 we can see that the best perform-
ing aggregation duration was 0.5 ms and that the ac-
curacy generally increases with the aggregation du-
ration in this scenario.

4.3. Measuring rotation speed

In the three following subsections, we present ro-
tational speed experiments. In these experiments, we
used a power drill to spin observed objects. The
power drill is secured to a flat surface to prevent in-
juries. We begin capturing the event data and data

from the optical tachometer simultaneously. By cap-
turing the data for 4 seconds, we measure at least 80
revolutions of the observed object when the power
drill is set to its lowest speed. Since the rotation
speed of the power drill is not constant, we com-
pare the measured data from the tachometer and our
method for each second of the data independently
when experimenting with RoI sizes (e.g. Tab. 5), as
we believe that the rotation speed changes very little
during such time interval.

4.3.1 Felt disc with a high-contrast mark

This subsection presents experiments in the high con-
trast mark setup (Fig. 2c).

Selection of RoI We experimented with different
RoI positions and sizes to find the smallest RoI size
still producing accurate results. We picked three
of them for demonstration purposes (see Fig. 6a,b),
with the duration of the event-aggregation fixed and
set to 0.1 millisecond. The results are presented in
Tab. 5 alongside measurements obtained from the
laser tachometer.

The results show that even the smallest RoI of size
20 by 20 pixels (px) produces errors of the same or-
der as the larger RoI sizes.

Selection of aggregation duration In this experi-
ment, with the duration of the event aggregation, we
fixed the RoI to size 100×100 px. We present results
from one second of data with various durations of ag-
gregation ranging from 0.1 millisecond (ms) to 1 ms.
For the templates for each duration of the aggrega-
tion, see Fig. 6c. The results are shown in Tab. 6.
Increasing the aggregation duration marginally in-
creases the standard deviation of the average RPM
value. We believe that it is caused by the fact that the
mark produces a very distinctive pattern.

4.3.2 Fronto-parallel velcro disc

Here, we present experiments in the velcro disc setup
(see Fig. 2d) with fronto-parallel camera position.

Selection of RoI For the demonstration purposes,
we picked three Regions of Interest of sizes 100×100
px, 60 × 60 px and 40 × 40 px (see Fig. 8a,b). As
shown in Tab. 7, when a distinguishable pattern is
not present in the template, the smallest RoI of size
40× 40 px produces errors of two orders larger than
in the case of larger Regions of Interest.
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(a) Selected Regions of Interest

655x655px 100x100px 20x20px
(b) Templates with aggreg. duration of 0.1 ms.

t=0.1 ms t=0.25 ms t=0.5 t=1 ms
(c) A template as a function of

the duration t of the aggregation time interval.

Figure 6: Setup of experiment
4.3.1 (see Tab. 5, 6).

❍❍❍t(s)
method Tacho

Our method

655x655px

Our method

100x100px

Our method

20x20px

[0, 1)
1199.43

± 0.82

1199.12

± 0.53

1199.12

± 0.53

1199.12

± 0.53

[1, 2)
1200.85

± 0.21

1200.48

± 0.64

1200.48

± 0.73

1200.36

± 0.61

[2, 3)
1203.18

± 0.41

1202.53

± 0.93

1202.53

± 0.93

1202.65

± 1.07

[3, 4)
1203.1

± 0.21

1203.49

± 0.87

1203.49

± 0.72

1203.49

± 0.87

Table 5: Revolutions per minute ±
2σ (4) as a function of the size of
the Region of Interest (see Fig. 2c,
6b).

PPPPPt(ms)
method Tachometer

Our method

100x100px

0.1

1198.9

± 1

1199.12

± 0.53

0.25
1199.06

± 1

0.5
1198.75

± 1.67

1.0
1198.76

± 2.41

Table 6: Revolutions per minute ±
2σ (4) as a function of the dura-
tion of the event-aggregation (see
Fig. 2c, 6c).

Figure 7: The fronto-parallel felt disc with a high-contrast mark experiment.

(a) Selected Regions of Interest

100x100 px 60x60 px 40x40 px
(b) Templates with aggreg. duration of 0.1 ms.

t=0.1 ms t=0.25 ms t=0.5 t=1 ms
(c) A template as a function of

the duration t of the aggregation time interval.

Figure 8: Setup of experiment
4.3.2 (see Tab. 7, 8).

❍❍❍t(s)
method Tacho

Our method

100x100px

Our method

60x60px

Our method

40x40px

[0, 1)
1266.07

± 0.38

1266.21

± 0.83

1265.96

± 1.36

1394.74

± 269.44

[1, 2)
1266.67

± 0.29

1266.46

± 1.13

1266.72

± 1.41

1670.26

± 365.62

[2, 3)
1267.65

± 0.46

1267.61

± 0.75

1267.61

± 1.04

1235.53

± 61.58

[3, 4)
1267.38

± 0.4

1267.48

± 1.05

1267.36

± 1.6

1407.24

± 219.57

Table 7: Revolutions per minute ±
2σ (4) as a function of the size of
the Region of Interest (see Fig.2d,
8b).

PPPPPt(ms)
method Tachometer

Our method

120x120px

0.1

1266.08

± 0.38

1266.08

± 0.71

0.25
1265.83

± 1.46

0.5
1265.85

± 2.4

1.0
1265.96

± 5.83

Table 8: Revolutions per minute ±
2σ (4) as a function of the dura-
tion of the event-aggregation (see
Fig.2d, 8c).

Figure 9: The fronto-parallel velcro disc experiment.

Selection of aggregation duration We fixed the
RoI size to 120 × 120 px and aligned it with the ob-
ject’s centre of rotation. From Tab. 8, we see that the
average RPM values remain close to those measured
by the tachometer. The standard deviation of the av-
erage RPM increases as the duration of the event ag-
gregation prolongs, which is expected as longer time
intervals of event aggregation reduce accuracy.

4.3.3 Velcro disc with non-frontal camera be-
hind a glass sheet

In this subsection, we present experiments with a vel-
cro disc observed by the camera at a 45° angle that
captures data through a sheet of glass.

Selection of RoI We experiment with RoI sizes
ranging from 200 × 200 px to 35 × 35 px. For RoI
positions, see Fig. 10a. We present results for three
selected sizes in Tab. 9. As shown in this table, the
performance of our method degrades significantly in
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(a) Selected Regions of Interest

120x120 px 80x80 px 35x35 px
(b) Templates with aggreg. duration of 0.1 ms.

t=0.1 ms t=0.25 ms t=0.5 t=1 ms
(c) A template as a function of

the duration t of the aggregation time interval.

Figure 10: Setup of experiment
4.3.3 (see Tab. 9, 10).

❍❍❍t(s)
method Tacho

Our method

120x120px

Our method

80x80px

Our method

35x35px

[0, 1)
1578.2

± 1.48

1578.56

± 1.78

1578.56

± 1.78

1257.61

± 192.37

[1, 2)
1580.19

± 0.98

1579.76

± 1.57

1579.77

± 2.24

1392.5

± 147.16

[2, 3)
1578.38

± 0.78

1578.57

± 2.11

1578.97

± 2.26

1435.02

± 130.11

[3, 4)
1577.47

± 0.68

1577.76

± 1.29

1577.36

± 1.85

1394

± 166.97

Table 9: Revolutions per minute ±
2σ (4) as a function of the size of
the Region of Interest (see Fig.2e,
10b).

PPPPPt(ms)
method Tachometer

Our method

120x120px

0.1

1578.2

± 1.48

1578.29

± 1.21

0.25
1578.56

± 1.78

0.5
1578.16

± 1.55

1.0
1578.95

± 3.05

Table 10: Revolutions per minute
± 2σ (4) as a function of the dura-
tion of the event-aggregation (see
Fig.2e, 10c).

Figure 11: The non-frontal velcro disc experiment.

the case of the smallest 35 × 35 px RoI. We believe
that it is caused by the fact that there are not enough
distinctive events in such a small RoI.

Selection of aggregation duration From Tab. 10,
it is clear that with 120 × 120 px RoI, all aggrega-
tion lengths yield measurements comparable to the
ground truth device measurements. With the longest
event-aggregation interval of 1 ms, the 2σ is approx-
imately two times larger than with the other lengths
and ground truth data.

4.4. Discussion

Based on the presented experiments, we conclude
that (i) a small RoI is feasible without degraded ac-
curacy when a distinguishable pattern is present. (ii)
the best results are achieved when the RoI covers the
area with the highest density of events, and the tem-
plate captures a distinctive pattern emerging periodi-
cally, (iii) the event-aggregation duration of 0.25 ms
is preferred, as it provides a good balance between a
low number of event-aggregation arrays resulting in
faster computations and relatively low standard devi-
ation of the average results.

We could not find the parameters breaking our
method in the fronto-parallel high contrast mark ex-
periment. We believe the mark, static camera, static
lighting, and fixed power drill contributed to this.

Limitations The presented method does not con-
sider an automatic detection of a suitable RoI and
its respective template. Also, no centrosymmetric
objects were tested - the symmetries might produce
spurious peaks.

5. Conclusion

In this paper, we proposed a novel contactless
measurement method of periodic events with an
event camera. The method only assumes that the ob-
served object periodically produces a similar set of
events by returning to a known state or position.

We evaluated the proposed method on the task of
measuring the frequency of periodic events and ro-
tational speed, achieving a relative error lower than
±0.04%, which is within the error margin of the
ground-truth measurement. The precision is main-
tained while measuring frequencies ranging from 20
hertz (equivalent to 1200 RPM) up to 2 kilohertz
(equivalent to 120 000 RPM). We demonstrated ro-
bustness against changes in camera angles.
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Abstract.
In this paper, we introduce a framework for evalu-

ating style transfer methods that simulate desired tar-
get weather conditions from source images, acquired
in fair weather. The resulting images can be used
for targeted augmentation of datasets geared toward
object detection. Our approach diverges from tradi-
tional measures that focus on human perception only,
and importantly, does not rely on annotated datasets.
Instead, we operate on statistical distribution of out-
comes of the inference process (in our case, object
detections).

The proposed evaluation measure effectively pe-
nalizes methods that preserve features and consis-
tencies in object detection, and awards those, which
generate challenging cases more similar to the target
style. This is counteracted by the requirements that
the generated images remain similar to the images
acquired in target weather conditions.

This shift enables a more relevant and computa-
tionally practical assessment of style transfer tech-
niques in the context of weather condition gener-
ation. By reducing the dependency on annotated
datasets, our methodology offers a more streamlined
and accessible approach to evaluation.

1. Introduction

In the rapidly evolving field of computer vision,
the enhancement and adaptation of datasets through
style transfer, particularly under varying weather
conditions, is of paramount importance [20]. The
research, presented in this paper, is primarily moti-
vated by the desire to improve the performance of
advanced driver assistance systems (ADAS) through
targeted learning of hard examples from challenging
weather conditions. Importantly, the method itself
does not directly enhance ADAS; rather, it provides

Figure 1: Successful style transfer mimicking real
rain’s impact on vehicle detection. Top: input im-
age; middle: simulated rainy image; bottom: style
reference (rainy weather). Vehicle detection using
YOLOv8 [11] shows significant performance drop
from top (clear) to middle (rainy) image.

a quantitative measure of quality of synthetic sam-
ples in context of ADAS tasks, which could poten-
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tially be used to refine and improve already existing
algorithms. The collection of images under adverse
weather is often hindered by their rarity, seasonal
dependence, and increased risk to vehicles. Thus,
synthesizing weather conditions in existing images
recorded in fair weather, that not only look realistic
but also can correctly challenge or impair the perfor-
mance of computer vision algorithms, is a key point
of interest in the modern automotive industry. As-
sessing the quality of style-transfer model is a diffi-
cult task and still remains an open issue [23].

In this paper, we propose a novel evaluation mea-
sure that quantitatively shows how successful style
transfer is by visual quality of generated images
while keeping the statistics of object detection sim-
ilar to the targeted (conditional) style. Our proposed
method should help object detection by determining
if a dataset of images is challenging enough and at
the same time has similar core characteristics to tar-
get style, for it to be used to improve object detection
in specific weather conditions. The approach of this
paper is tailored towards ADAS applications. Ex-
ample result of successful transfer where detection is
hindered by the added style in the same way it would
be by the style of a rainy image is shown in Figure
1. Additionally, if we are in possession of annotated
fair weather images, then the style transfer preserves
the annotations since they show the same scene. This
significantly simplifies the process of obtaining ex-
amples difficult for object detection since we can an-
alyze and extract those examples and based on the
statistical difference of annotations and detections.

2. Related Work

We split our related work section into three parts:
in the first (i) we look into type of generative mod-
els we use in our paper, the second (ii) covers the
work on the most popular evaluation measures and
the third (iii) the practical computer vision applica-
tions we will focus on.

Generative models. Ever since the introduction
of generative adversarial networks (GANs) [6], the
idea of translating images from one domain to an-
other has been a keen topic of research. Early works
in this were done by Isola et al. in [9] where they
showed it was possible to preform image-to-image
(I2I) translation using conditional GANs. For evalu-
ation measures they used Amazon Mechanical Turk
(AMT) and “semantic interpretability“ [24] of the
generated images to see how well can an off-the-

shelf image semantic segmentation network such as
[15], segment generated images. Early research in
I2I didn’t consider unpaired translation, the issue
of not having image pairs from two domains, since
it focused on automatic segmentation, coloring and
label→image tasks. Amongst the first to solve this
problem, Park et al. introduced cycle consistency
to GANs [25], creating CycleGAN. Their methods
for evaluation are the same as in [9]. More recently,
work by Park et al. in [17] and Hu et al. [8] created
unpaired I2I translation based on contrastive learn-
ing, reaching current state-of-the-art performance in
style transfer tasks. In our tasks we look at weather
condition translation and first to create a bespoke net-
work for this are Li et al. [12]. They employed
attention and segmentation modules to the genera-
tor. More recently Piazzati et al. in [18], found that
using physics-informed network to guide the effects
of weather proved to be state-of-the-art in weather
translation.

Evaluation measures. The first, and one of the
most used, measures for quantitative score of GANs
is Inception Score (IS) [21]. It uses a deep net-
work Inception v3 [22] pre-trained on ImageNet [5]
to extract relevant features from generated images
and calculates the average KL-Divergence between
the conditional label distribution and generated sam-
ples distribution. It shows correlation with human
scoring on CIFAR-10 dataset. Barratt et al. in [1]
showed that IS has issues with both theory and use
in practice. More modern measure is Fréchet incep-
tion distance (FID), introduced by Heusel et al. in
[7]. Similar to IS, FID uses Inception v3 network
pre-trained on ImageNet, but now the generated and
real samples are embedded to tensors before calculat-
ing the statistical distance, in this case 2-Wasserstein,
between them. Chong et al. in [4] prove that both
IS and FID are functions of the generator and the
number of samples, therefore we can’t fairly com-
pare two generators and even the same generators
evaluated on different number of images. They pro-
pose a new measure of effectively unbiased FID and
IS called FID∞ and IS∞ respectfully. Besides the
bias issue FID also assumes a Gaussian distribution
of samples which is not necessarily true; to solve this,
Binkowski et al. [3] introduce kernel inception dis-
tance (KID) where the kernel can be customized to
accommodate different tensor distributions. Betzalel
et al. in [2] state that the same problems that IS has of
Inception v3 being trained on ImageNet are present
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in FID as well, and suggest using CLIP [19] basis in-
stead of the Inception model. They also state that
evaluation measures in general might benefit from
multiple measures such as FID∞ + KID.

Applications. One of the practical applications of
computer vision is in the world of advanced driver
assistance systems (ADAS). Nidamanuri et al. in
[16] state that the camera sensor is useful for multiple
functions such as object detection, blind spot moni-
toring, parking assist, lane keeping and traffic sign
recognition, with moderate accuracy. Liu et al. [14]
state that classical object detectors often fail when
faced with adverse weather conditions.

Our research is similar to Li et al. [12] where they
employ a weather classifier trained on real weather
images, to check if images generated by their model
are good enough to fool the classifier into giving the
image a label of the target condition.

3. Methods

Our framework is comprised of multiple elements.
First is the ADAS algorithm (e.g. object detection)
that we wish to improve by additional learning on
target weather examples. The second component
is a trained generator of target weather conditions,
which takes non-annotated fair-weather image and
transforms it into target-weather image. The third
component is an image quality assessment measure,
which guarantees the similarity of generated images
to the real world target weather images. The fourth
and critical component of our proposed framework
is evaluation measure of performance degradation of
the chosen ADAS algorithm that does not rely on im-
age annotations.

3.1. Object detection with YOLOv8

Since we don’t have access to actual ADAS al-
gorithms used on vehicles, we believe that YOLOv8
as an example of a state-of-the-art object detector is
a good approximation. YOLOv8 is a deep neural
network [11], developed as an upgrade on YOLOv5
[10] architecture in both speed and performance. In
this paper we use it as a default object detector. It’s
trained on COCO Dataset [13] with 272 categories.
For our use case (simulation of ADAS), many of
these categories are not interesting, hence we filter all
results and look only for a few categories. In no par-
ticular order these are: car, truck, bus, train, person
and bicycle. COCO has additional categories associ-
ated with driving such as van and motorcycle, but we

treat these all these as cars in case of motorcycles and
truck for vans. These particular categories were cho-
sen based on the most common vehicles found in our
custom driving dataset. As detection result, YOLOv8
returns a bounding box and a label (category). We
use this to compare to the ground truth. Ground truth
was done by manually labeling and drawing bound-
ing boxes and object categories same ones as taken
in YOLO, on test set of 92 images from both dry and
rainy weather conditions.

3.2. Image quality assessment with FID

Despite its issues with bias, most generative mod-
els are evaluated using the FID measure for image
assessment. A few methods have been developed af-
ter FID, however it remains the most used measure
in practice. This is due to the fact that it’s rela-
tively easy to calculate and there are numerous im-
plementations. To calculate it we run inference on
a pre-trained Inception v3 model and calculate the
2-Wasserstein distance from the N × 2048 dimen-
sional vector we get as a result from the inference.
N is the number of images from each label (real or
generated). FID assumes a Gaussian distribution on
the feature vector with mean µ and covariance ma-
trix Σ. FID score is calculated as the square of the 2-
Wasserstein distance (1) between tensors X and Y :

FIDX,Y = ∥µX − µY ∥2+
+ tr

(
ΣX +ΣY − 2

√
ΣXΣY

)
. (1)

Since FID assumes Gaussian distribution, µx and
µY are the means of tensors X and Y , and ΣX

and ΣX their respective covariance matricies. FID
is known to be biased ([2] [4]), however it is the
most used measure of generative model quality, even
in tasks such as conditioned style-transfer ([8] [12]
[18]). Despite objectively better measures existing
such as FID∞ [4], KID [3] and CLIP [19], in this
paper we decided on using FID due to its ease of
implementation and popularity. We will discuss the
possible issues with this choice in section 4.

3.3. Quality of detection measure

To measure quality of detections without anno-
tated images, we rely on statistics of results from
YOLOv8, on the entire test set. The assump-
tion underpinning this approach is that statistically,
YOLOv8 detections should have similar distribution
shape to the actual annotations on the same driving
route, regardless of the weather. This statement will
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be backed up in section 4.1. Detection is run on all
images included in the test: input image, conditional
style image and generated image. For consistency
with our use case we refer to these as “dry”, “rainy”
and “generated” (images generated from dry to have
the style of rainy), respectively. From detection re-
sults on an image we take two values, the horizon-
tal and vertical coordinate of the bounding box and
the size of the bounding box in pixels in both hor-
izontal and vertical directions. From these we cre-
ate 2D discrete histograms which, when computed
for the whole set of a single image style, show us
statistical feature that we want to emphasize during
translation. In our case this is object detection. We
can compare histograms using an adequate measure
like Bhattacharyya distance. Bhattacharyya distance
tells us how “far“ two discrete data distributions are
one to another. Before computing, all histograms
are normalized to a range [0, 1]. This makes our
method invariant to actual number of detected ob-
jects and focuses only on positions. Currently, this is
an advantage since we expect the number of vehicles
for example, to be different during data collection in
different weather conditions. However, with careful
data acquisition (ensuring that the streets are equally
busy) the absolute frequencies could be another fea-
ture to include. Computing the Bhattacharyya dis-
tance is quite straightforward, in this case as we fol-
low equation (2) where P and Q are discrete data
distributions and pi and qi are their respective bins:

dB(P,Q) = −ln

(
n∑

i=1

√
piqi

)
(2)

For computing equation (2) on 2D histograms, we
simply transform a n×m matrix into a 1× (n×m)
vector. This approach, along with equation (2), mea-
sures the effectiveness of YOLOv8 in object detec-
tion across various images. A requirement for using
this measure is that dry and rainy images need to con-
tain similar image content across the dataset, but for
tasks such as style-transfer this is fulfilled in most
cases.

3.4. Combining the measures

As a result of FID we get a single number that
should indicate the “visual distance“ between two
images consistent with human evaluation. With de-
tection this is more complicated and we propose a
method described in section 3.3.

We compute Bhattacharyya distances between

histograms for both position and size to get a sense
how close the distributions of detected objects are for
dry, rainy and generated images. Normalizing all of
the calculated values for both FID and Bhattacharyya
distance so the smallest is 0 and largest 1, and can
combine them into a weighted sum to give us a score
shown in equation (3):
s(X,Y ) = −α · FIDX,Y +

+ β · dB (Hsize(X), Hsize(Y ))+

+ γ · dB (Hposition(X), Hposition(Y )) (3)

where s(X,Y ) is the measure score between
a set of images X and Y , FID(X,Y ) is the
FID score between those two sets, Hsize(X),
Hsize(Y ) and Hposition(X), Hposition(Y ) are the
notations for histograms computed for detection
sizes and positions of detection for a set of im-
ages X and Y , dB(H(X), H(Y )) is the Bhat-
tacharyya distance between sets of histograms. Pa-
rameters α, β and γ are hyperparameter weights
(α, β, γ ≥ 0) for FID, dB (Hsize(X), Hsize(Y )) and
dB (Hposition(X), Hposition(Y ))) respectively, that
describe the contribution to the total measure score.

3.5. Dry-to-rainy translation: QS-Attn Model

In this paper, we utilized the query-selected atten-
tion (QS-Attn) model [8] for I2I translation tasks.
QS-Attn enhances contrastive learning [17] by se-
lectively focusing on significant anchor points within
images. This model employs an attention mechanism
that prioritizes important queries in the source do-
main, creating a condensed attention matrix. This
matrix is pivotal in routing features across both
source and target domains, ensuring that relational
structures from the source are retained in the trans-
lated images.

4. Experiments

4.1. Dataset and training

For our dataset, we recorded 1242 images on a
route in dry and the same amount in rainy weather.
This makes our dataset weakly-paired, meaning pairs
of images do not exist since the recording environ-
ment (the road) is dynamic, but images are still sim-
ilar enough to be considered “location pairs“. Ex-
amples of this are shown in Figure 2. Recording the
dataset like this, twice on the same route with the
camera fixed in the same place on the windscreen,
ties in with the discussion of weather the statistics
of detections are the same. These statistics are very
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route specific and we choose a route that has main
streets with a good flow of traffic as well as resi-
dential areas with less active traffic and more passive
traffic such as parked vehicles to try and cover what
most vehicles see in day to day city driving. Of the
complete dataset, 1140 images are training images,
10 validation images and 92 test images. Images
in the dataset cover urban driving scenes in central
European cities, in dry conditions and rain such is
shown in Figure 2. All images are resized from orig-
inal 3840×2160 pixels resolution, to 400×400 pixels
to accommodate the model input and to make it pos-
sible to train the model on a single Nvidia RTX3090
GPU.

For our model, we used an official implementa-
tion1 of GAN described in section 3.5. Training hy-
perparameters are default, except for “QS Mode“ set
to global, “crop size“ and “load size“ hyperparam-
eters are set to 400 to accommodate hardware limi-
tations. Model was trained for 400 total epochs, of
which the first 200 are with the default learning rate
(“n epochs“ hyperparameter) and the latter 200 with
linear learning rate decay (“n epochs decay“ hyper-
parameter).

4.2. YOLOv8 detection on our data

To benchmark YOLOv8, we annotated our test
data with bounding boxes and labels for objects of
interest. Annotation statistics are shown in Table 1,
the numbers represent the number of bounding boxes
for that label in absolute value and as a percentage
of all labels. Results on 92 test images per weather
condition are shown in Table 2. Looking at normal-
ized histograms in Figure 3 of detections for both dry
and rainy conditions, we can get a sense how well
YOLOv8 does in a more practical sense. Since his-
tograms in Figure 3 and 4 are normalized to a range
[0, 1], the shape of the distribution is for now much
more relevant for us than the values at any particular
point. Figures 3 and 4 are the distributions we are
basing our evaluation on. We can see that they are
similar in shape. This results needs to be additionally
verified with more annotated images for both dry and
rainy conditions.

4.3. Evaluation procedure

Our evaluation relies on the fact that during train-
ing, model creates more and more realistic rainy im-

1https://github.com/sapphire497/
query-selected-attention

Figure 2: Sampled images from our weakly-paired
dataset depicting scenes of urban driving

Dry Rain
Car 364 (78.45%) 322 (82.11%)
Person 69 (14.78%) 28 (7.05%)
Bicycle 13 (2.8%) 17 (4.28%)
Bus 9 (1.94%) 10 (2.52%)
Truck 9 (1.94%) 20 (5.04%)

Table 1: Annotation results for our dataset

Dry Rain
Precision 0.734 0.377
Recall 0.492 0.153
F1 Score 0.589 0.218

Table 2: YOLOv8 benchmark results for our dataset

ages as epochs tend towards the final one. We can
sample the training weights at certain points during
training to obtain a sub-optimal model and run in-
ference with test image set to obtain intermediate re-
sults. We then follow method described in section
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Figure 3: 2D histogram comparison of detections on
dry images.

Figure 4: 2D histogram of detections on rainy im-
ages.

3.4, and test our combined evaluation measure. One
thing we need to make sure is to correctly sample
results from dry and generated set. The reason for
this is, because of the nature of style-transfer tasks,
there is a possibility of high correlation between de-
tection scores from these dry and generated images
since they depict the exact same scene only in dif-
ferent weather. To get an accurate measure of per-
formance over different samples, we take every even
numbered image from the test set of dry samples
and odd numbered sample from the generated set, to

Figure 5: 2D histogram of samples taken on last
training epoch

make sure the results are correctly calculated. Rainy
images contain different scenes so sampling can be
done either way. From this we create histograms for
all sets of images: dry, rainy and generated. Example
of histograms from the last training epoch is shown
in Figure 5. Normalization to range [0, 1] is done and
finally we compute Bhattacharyya distance accord-
ing to eq. (2) between dry and generated, and dry
and rainy histograms. FID is then computed between
rainy and fake images to give us a FID score. We
note we used FID primarily for its ease of computa-
tion, implementations of other measures, such KID
and FID∞, are less common.

For our tests, following the described method, our
measure rewards generated samples that have a sim-
ilar (according to eq. (2)) histogram distribution to
rainy samples, and low FID score between rainy and
generated samples. For clarity, in our experiments
we compared dry to rainy and dry to generated sam-
ples to show that the measure for generated images
goes from being more similar to dry towards being
more similar to rainy. Theoretically the best score
a model can achieve is 2. This is because we need
to make sure all values are scaled to the same size,
therefore we normalize both FID and Bhattacharyya
distances to [0, 1]. Setting all of the weights in eq.
(3) to α, β, γ = 1 gives us a maximum score of 2.

4.4. Results

We sample the model at every 5th epoch and eval-
uate the results according to our method. We first
look at graphs for all influential measures over sam-
pled epochs separately and not normalized. In Figure
6, we can see that the measure for similarity of his-
tograms between dry and fake samples drifts quite
rapidly from values closer to dry vs. dry, towards dry
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Figure 6: Bhattacharyya distance comparison for po-
sitional histograms over training epochs

vs. rainy quite rapidly at the beginning of the training
process.

Spikes in the Figure 6 are due to the random na-
ture of training generative models and we can inter-
pret it as follows: the model suddenly learns how to
represent a new feature from the rainy set such as
windscreen wipers found on training images, so sud-
denly on all generated images form a certain epoch
there are simulated wipers represented as a back line
across the screen. Example of this is in Figure 10.
These interfere with possible detections and make the
histogram of generated samples dissimilar to that of
dry samples. From the section 4.3 we know our mea-
sure has a theoretical best value so going over this is
not wanted, just as much as not reaching this value
in the first place. Spikes can tell us that something
drastically changed during training, and needs to be
visually examined. Windscreen wipers are actually a
valid distortion on our images, if the camera is placed
in a way that is occasionally covered with wipers and
we can use this epoch to obtain difficult training sam-
ples that simulate wipers if that is our goal.

Looking at size comparisons, things are more dif-
ficult to assess. Graph showing comparisons over
epochs is shown in Figure 7. Detection sizes are
noisy over epochs and general trend is difficult to see.
This is due to the fact that over different epochs im-
ages go through various phases of added artifacts and
effects by the model, making the detections that are
present, inconsistent.

Analyzing the graph of FID score over epochs in
Figure 8, we get a sense how does well does the
translation work. We can see that the score com-
paring dry and generated samples trends up towards
the value of dry vs. rainy and, more relevant for us,

Figure 7: Bhattacharyya distance comparison for
size histograms over training epochs

Figure 8: FID score over training epochs

the score comparing rainy and generated trends down
over epochs. This, to a certain degree, ensures us that
the style-transfer seems to be working correctly.

Now normalizing these values and summing them
according to equation (3), gives us our measure how
good the style transfer is. Measure is shown in Figure
9.

We also fitted a trend line using least squares to the
results to get a better trend estimate. We can see that
the measure value goes up with training epochs, reas-
suring us the model is doing style-transfer correctly
according to both FID (as proxy for human percep-
tion) and at the same time making the images chal-
lenging for an object detector in a similar direction to
that of a rainy image. Different weights would em-
phasize different aspects of style-transfer and there-
fore give us different looking graphs for a model, de-
pending on what component is most important for
any given task. Example image sampled at different
epochs where our measure shows higher values are
shown in Figure 10.
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Figure 9: Our model evaluation measure over train-
ing epochs. Hyperparameters are set to values
α, β, γ = 1. s(X,Y ) represents the score between
two sets of images.

One important fact to mention is that all of the pre-
sented results were done on our test dataset that has
92 images from each weather condition. This means
that looking at raw values of the measure is not reli-
able enough since we can’t with certainty state that
the results of even Bhattacharyya distance are unbi-
ased, let alone FID. Therefore, for current results we
propose looking at only the trend is it rising or falling
and based on that determine is the model working in
the wanted “direction“.

5. Conclusion

This study developed a framework for evaluating
style transfer in weather-conditioned image gener-
ation, addressing the challenge of maintaining key
features for object detection while accurately sim-
ulating weather conditions. This has implications
for dataset augmentation in fields like ADAS. Fu-
ture goals include testing with a larger dataset, both
for training and evaluation, and further research on
the statistical consistency of the proposed measure.
Plans also include adapting this measure as a loss
function for training style transfer models for specific
computer vision tasks. Additionally, alternatives to
FID and other histogram distances for image similar-
ity will be explored.

Acknowledgement

This work was financed by the Slovenian Research
Agency (ARIS), research program [P2-0095], and re-
search project [J2-2506].

Figure 10: Example generated images by QS-Attn
[8] from the test dataset on epoch numbers 130, 230,
270, 360 (roughly corresponding to local maxima of
the proposed measure) and 400 (final epoch), in order
from top to bottom. In first three, an attempt to add
wipers is clearly visible.
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