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Abstract. Optical flow is a useful input for various
applications, including 3D reconstruction, pose es-
timation, tracking, and structure-from-motion. De-
spite its utility, the problem of dense long-term track-
ing, especially over wide baselines, has not been
extensively explored. This paper extends the con-
cept of combining multiple optical flows over log-
arithmically spaced intervals as proposed by MFT.
We demonstrate the compatibility of MFT with two
dense matchers, DKM and RoMa. Their incorpora-
tion into the MFT framework optical flow networks
yields results that surpass their individual perfor-
mance. Moreover, we present simple yet effective en-
sembling strategies that prove to be competitive with
more sophisticated, non-causal methods in terms of
position prediction accuracy, highlighting the poten-
tial of MFT in long-term tracking applications.

1. Introduction

Obtaining point-to-point correspondences is a
classical task in computer vision, useful for a wide
range of applications including tracking, structure-
from-motion, and localization. Despite the extensive
research in wide baseline stereo methods, including
those with a time baseline, the domain of dense point
correspondences in videos has not been explored un-
til recently [38, 53]. The emergence of the TAP-Vid
dataset [11] has further fueled interest in long-term
point-tracking methods.

Point-trackers usually [12, 27, 45, 11] track sparse
sets of points. However, dense correspondences are
useful in various applications, such as video editing,
object tracking, and 3D reconstruction. While optical
flow techniques provide dense correspondences, they
are typically limited to pairs of consecutive frames.

Long-term dense tracking has been recently ad-
dressed by Neoral et al. [38] MFT tracker, which

computes optical flow not only for consecutive
frames but also for pairs of more temporally distant
frames, including flow computation between the ref-
erence and every other frame of the video. At ev-
ery frame, optical flow is computed w.r.t. the pre-
vious, first, and a constant number of logarithmically
spaced frames. Such approach is linear in the number
of frames and thus not computationally prohibitive.

In the original MFT[38], all optic flow computa-
tions are based on RAFT [50], which has performed
well in both standard benchmarks [2, 36] and in ap-
plications. However, the RAFT optical flow network
was trained on pairs of consecutive frames, which is
likely sub-optimal for large baselines.

Recently, dense matchers such as DKM [14] and
RoMa [15] have been published. This development
opens the possibility to apply the MFT framework
with different dense matchers, or to use RAFT for
pairs of frames with short temporal, and thus prob-
ably spatial, baseline. The only requirement of the
MFT “meta optic flow algorithm” is that the basis
dense two view optic flow or matcher provides con-
fidence in its predictions.

In this paper, we evaluate the MFT approach with
the DKM and RoMa matchers instead of RAFT. We
show that both of these matchers provide accurate
matches, but inaccurate occlusion predictions. Ad-
dressing the strengths and weaknesses of optical-
flow-based and dense-matching-based methods, we
propose a combined tracker, that outperforms the
original MFT design.

In summary, our contributions are: (1) We show
how to adapt dense matchers DKM and RoMa for
use in the MFT framework, and experimentally eval-
uate their performance. (2) We show that the MFT
algorithm outperforms both direct flow between the
first and the current frame, and the chaining of opti-
cal flows computed on consecutive frames for RAFT,



DKM, and RoMa. (3) Based on better results of
RoMa over DKM in our experiments, we propose a
dense long-term tracker that combines the strengths
of RAFT-based MFT and RoMa-based MFT.

2. Related Work

Tracking, 3D Reconstruction, and SLAM Object
tracking algorithms [1, 26, 10] traditionally outputted
the track of an object specified in the first frame in
the form of bounding boxes. Later, the focus shifted
towards segmentation-based tracking [29, 41, 34].

Modern model-free trackers based on differen-
tiable rendering [54, 43], that can simultaneously
track and reconstruct any object specified in the first
frame are naturally able to provide point-to-point
correspondences for the tracked object; however, to
the best of our knowledge, they can track a sin-
gle object only or require multi-camera input [33].
Additionally, recent methods [56, 57, 55], involv-
ing differentiable rendering of neural radiance fields
(NeRFs) [37], show potential in creating deformable
3D models for point tracking. Nonetheless, the
extensive computational demands of these methods
limit their practical applicability in real-world sce-
narios.

The traditional SLAM methods [46] produced
sparse point clouds. Later on, semi-dense [16,
51] SLAM methods appeared. Some SLAM-based
trackers, [17] can densely estimate point positions
in static scenes, and recent advances in differen-
tiable rendering opened the avenue for differentiable-
rendering-based monocular SLAMs [42] but their
application remains constrained to static scenes.

Optical Flow estimation is a classical problem in
computer vision, with the early works [32, 20] re-
lying on the brightness-constancy assumption. With
the advent of deep neural networks, the focus shifted
towards learning-based approaches [13, 49, 23, 50,
21] trained on synthetic data.

Optical flow estimation in state-of-the-art
methods, exemplified by RAFT [50] and Flow-
Former [21], is achieved through the analysis of a
4D correlation cost volume, considering features of
all pixel-pairs. These techniques excel in densely
estimating flow between consecutive frames, yet
they encounter challenges in accurately determining
flow across distant frames, particularly in scenar-
ios with large displacements or significant object
deformation.

Multi-step-flow algorithms [7, 6, 8] address the

limitations of concatenation-based approaches for
long-term dense point tracking. These algorithms
create extended dense point tracks by merging op-
tical flow estimates across variable time steps, ef-
fectively managing temporarily occluded points by
bypassing them until their re-emergence. However,
their dependence on the brightness constancy as-
sumption renders them less effective over distant
frames. Subsequent works in multi-step-flow, such
as the multi-step integration and statistical selection
(MISS) approach by Conze et al. [4, 5], further re-
fine this process. This approach relies on generating
a multitude of candidate motion paths from random
reference frames, with the best path selected through
a global spatial smoothness optimization process.
However, this strategy makes these methods compu-
tationally demanding. Although certain optical flow
techniques [24, 39, 22, 59, 31, 58] address occlusions
and flow uncertainty, most leading optical flow meth-
ods, influenced by standard benchmarks like those in
Butler et al. [3] and Menze et al. [35], do not detect
occlusions. Jiang et al. [25], building on RAFT [50],
has taken a different approach in which they handle
occlusion implicitly by computing hidden motions of
the occluded objects. However, the method still falls
short in the context of tracking dynamic, complex
motions.

We now describe in greater depth three methods
that are most relevant to our paper: RAFT [38],
DKM [14], and RoMa [15]. While the latter two are
in fact dense matchers, we will use the term inter-
changeably with long-ranged optical flow estimation
with occlusion prediction.

MFT extends optical flow into dense long-term tra-
jectories by constructing multiple chains of optical
flows and selecting the most reliable one [38]. The
flow chains consist of optical flow computed both be-
tween consecutive frames, and between more distant
frames, which allows for re-detecting points after oc-
clusions. The intervals between distant frames are
chosen to be logarithmically spaced.

MFT extends the RAFT optical flow method with
two heads, estimating occlusion and uncertainty for
each flow vector. Like the optical flow, the uncer-
tainty and the occlusion are accumulated over each
chain, and the non-occluded flow chain with the least
overall uncertainty is selected as the most reliable
candidate. The long-term tracks of different points
thus chain possibly different sequences of optical
flows. This strategy on one hand takes into account



that changes in appearance and viewpoint gradually
accumulate over time, which makes it more reli-
able to chain flows on easier-to-match frames rather
than estimating matches directly between the tem-
plate and the current frame. On the other hand, short
chains containing longer jumps with low uncertainty
result in less error accumulation.

DKM proposed by Edstedt et al. [14], a dense point-
matching method, employing a ResNet [19]-based
encoder pre-trained on ImageNet-1K [44] for gen-
erating both fine and coarse features. The coarse
features undergo sparse global matching, modeled
as Gaussian process regression, to determine embed-
ded target coordinates and certainty estimates. Fine
features are refined using CNN refiners, following a
methodology similar to Truong et al. [52] and Shen et
al. [47]. DKM’s match certainty estimation relies on
depth consistency, necessitating 3D supervision. The
process concludes by filtering matches below a cer-
tainty threshold of 0.05 weighted sampling for match
selection. Edstedt et al. [14] released outdoor and in-
door models trained on MegaDepth [30]) and Scan-
Net [9] respectively.

RoMa similarly to DKM, RoMa [15] is a dense
matching method that provides pixel displacement
vectors along with their estimated certainty, building
upon the foundation set by DKM [14]. RoMa differ-
entiates itself by employing a two-pronged approach
for feature extraction: using frozen DINOv2 [40]
for sparse features and a specialized ConvNet with
a VGG19 backbone [48] for finer details. Unique
to RoMa is their transformer-based match decoder,
which matches features through a regression-by-
classification approach, better handling the multi-
modal nature of coarse feature matching. In con-
trast to DKM, RoMa’s pipeline omits the use of
dense depth maps for match certainty supervision,
relying instead on pixel displacements for match su-
pervision. Their model is trained on datasets like
MegaDepth [30] and ScanNet [9], similar to DKM.

Long-Term Point Tracking aiming to track a set of
physical points in a video has emerged significantly
since the release of TAP-Vid [11]. The dataset’s
baseline method TAP-Net [11] computes a cost vol-
ume for each frame, employing a technique akin
to RAFT’s approach [50]. It focuses on tracking
individual query points. PIPs [18] takes this ap-
proach to an extreme by completely trading off spa-
tial awareness about other points for temporal aware-

ness within fixed-sized temporal windows, making
it unable to re-detect the target after longer occlu-
sions. TAPIR [12] combines TAP-Net’s track ini-
tialization with PIPs’ refinement while removing the
PIPs’ temporal chunking, using a time-wise convo-
lution instead. CoTracker [27] models the temporal
correlation of different points via a sliding-window
transformer, modeling multiple tracks’ interactions.
While these methods are designed for sparse track-
ing, they can provide dense tracks by querying all
points in the first frame.

Notably, differentiable rendering has been lever-
aged in recent approaches, with OmniMotion repre-
senting 3D points’ motion implicitly using learned
bijections [53] enabling it to provide dense tracks.
Alternative methods like [33] which models the
scene as temporally-parametrized Gaussians[28].
However, these methods have their limitations, such
as OmniMotion’s quadratic complexity and the
multi-camera requirement of [33].

3. Method

For a stream {I1, ..., IN} of N video frames de-
fined on a common image domain Ω, we denote
the optical flow between frames i and j as F (i, j).
Moreover, we use σ(i, j) ∈ RΩ

+ to denote the esti-
mated flow variance, and ρ(i, j) ∈ [0, 1]Ω to repre-
sent the estimated certainty of F (i, j). Finally, oc-
clusion score o(i, j) ∈ [0, 1]Ω denotes the estimated
probability of pixels appearing in frame i being oc-
cluded in frame j. To simplify notation, although
F (i, j), ρ(i, j), and σ(i, j) are 2D or 3D tensors, we will
use these symbols to denote their values at a specific
point p = (x, y) in the image. Moreover, for every
point pi in frame i, its predicted position pj in frame
j relates to the optical flow F (i, j) as follows:

pj = pi + F (i, j)(pi). (1)

Let us denote by ϕRAFT, ϕDKM, ϕRoMa, ϕMFT the
functions computed by RAFT, DKM, RoMa, and
MFT respectively. By RAFT we mean the MFT’s
adaptation of RAFT with additional uncertainty and
occlusion heads [38]. The output vectors of these
methods are as follows:

ϕRAFT = (F (i, j), σ(i, j), ρ(i, j)) (2)

ϕW = (F (i, j), ρ(i, j)) (3)

ϕMFT = (F (i, j), σ(i, j), o(i, j)), (4)

where W is one of the wide-baseline methods, either
DKM or RoMa.



3.1. MFT Flow Chaining

MFT [38] achieves long-term optical flow esti-
mation by combining multiple optical flows. These
flows are obtained from ϕRAFT over logarithmi-
cally spaced distances. When estimating the flow
F (1, j), MFT utilizes a sequence of intermediate
flows. This sequence, denoted as S , comprises flows
F (j−∆1, j), ..., F (j−∆K , j). Here, ∆i represents log-
arithmic spacing and is defined as 2i−1 for i < K,
with ∆K = j − 1. We limit the number of interme-
diate flows, denoted by K, to a maximum of 5 and
ensure that j −∆K−1 > 1.

Additionally, MFT employs a scoring function
for evaluating the quality of the intermediate flows
chaining for each image point p1 in the reference
frame 1. The scoring function s(j−∆k, j) utilizes
chaining of estimated flow variances and occlusion
scores over an intermediate frame i:

σ(1, i, j)(p1) = σ
(1, i)
MFT (p1) + σ(i, j)(pi), (5)

o(1, i, j)(p1) = max{o(1, i)MFT (p1), o
(i, j)(pi)}, (6)

The point pi is computed using F (1, i)
MFT and the rela-

tion in Equation 1. The scoring function is then de-
fined as s(j−∆k, j)(p1) = −σ(1, j−∆k, j)(p1). If the
chained occlusion score o(1, j−∆k, j)(p1) exceeds an
occlusion threshold θo, we set s(j−∆k, j)(p1) = −∞.
This score is used to select the best flow for every
point p1, that is the flow with the lowest estimated
variance computed on chains that do not contain oc-
cluded points.

MFT computes long-term flow for any point p1 in
the reference frame 1 iteratively via chaining as

F (1, j)
MFT (p1) = F (1, iM )

MFT (p1) + F (iM , j)(piM ), (7)

where iM ∈ {j − ∆k | 1 ≤ k ≤ K} such
that the score s(iM , j)(p1) is maximal. Again, the
point piM is obtained using F (1, iM )

MFT (p1) and Equa-
tion 1. F (iM , j) is the flow obtained from an arbitrary
method that can also estimate its variance σ(iM , j)

and occlusion score o(iM , j). The flow chaining is
visualized in Figure 1.

The estimated variance and occlusion score for
frame j are then obtained from the chain over
frame iM as σ

(1, j)
MFT (p1) = σ(1, iM , j)(p1), respec-

tively o
(1, j)
MFT (p1) = o(1, iM , j)(p1). A pixel observed

in frame i is considered occluded in frame j if its
value o

(i, j)
MFT is above a threshold θo . In practice, we

set different thresholds for different backbone net-
works as we discuss in Subsection 3.2.

...

p1

pj−∆K−1

...

pj−∆1

...

pj

P = {j −∆k| 1 ≤ k ≤ K}

iM = argmaxi∈P s(i, j)(p1)

F(1, j−∆K−1)

MFT

F(1, j−∆1)
MFT

F(j−∆K , j),
s(j−∆K , j)

F(j−∆K−1, j),

s(j−∆K−1, j)

F(j−∆1, j),
s(j−∆1, j)

F(iM , j)

Figure 1: Illustration of the MFT flow chaining as
defined in Equation 7. The optical flows and scoring
functions are evaluated on the points in the outbound
nodes of their respective arcs.

3.2. Integration of DKM and RoMa

As we mentioned in the Introduction, we make the
conjecture that training RAFT for optical flow pre-
diction on consecutive video frames is suboptimal
for wide baselines. We therefore integrate DKM and
RoMa, capable of handling wider baselines. How-
ever, integrating these methods with MFT poses cer-
tain challenges due to their incompatible outputs.

In the first place, neither RoMa nor DKM provides
an occlusion score o, but only an estimate of the flow
prediction certainty ρ. We therefore artificially set
their occlusion scores as o = 1 − ρ. Furthermore,
although σ and ρ both represent the quality of esti-
mated optical flow, they are not directly comparable.
But in order to integrate them into the MFT frame-
work, we need to converse between them.

Through empirical analysis, we established a flow
certainty threshold θρ. When ρ exceeds this thresh-
old, we deem the optical flow reliable, assigning
σ = 0. Conversely, when ρ is below this thresh-
old, σ is set to 1000, correlating higher uncertainties
with increased variances in predicted flow. Addition-
ally, we observed that while oMFT, oDKM, and oRoMa
fundamentally represent the same concept, their re-
spective occlusion thresholds θoRAFT and θoRoMa vary.



In our experiments in Section 4, we use

θoRAFT = 0.02, θoDKM = θoRoMa = 0.95. (8)

For a visual comparison between the original MFT
and the integration of RoMa into MFT, see Figure 2.

3.3. Ensembling

We observed that, in terms of occlusion predic-
tion, MFT’s modification of RAFT achieves higher
accuracy compared to RoMa. Conversely, RoMa ex-
hibits better performance in optical flow prediction
relative to RAFT. Based on these findings, we de-
veloped an integrated approach that combines the
strengths of both methods. Specifically, our method
utilizes occlusion data from RAFT, while RoMa is
employed for position prediction, with both pro-
cesses executed in parallel within the MFT frame-
work. As detailed in Section 4, our most effec-
tive strategy involves employing RAFT for occlusion
score prediction and RoMa for position prediction,
provided the point is not predicted as occluded; in
cases of occlusion, RAFT’s predictions are preferred.

4. Experiments

In this section, we evaluate our proposed method.
Initially, we compare the MFT framework with di-
rect optical flow prediction and simple optical flow
chaining. Subsequently, we explore RoMa’s optical
flow prediction performance within the MFT frame-
work depending on whether it predicts the point as
occluded or non-occluded, which serves as a founda-
tional finding for our most effective ensembling strat-
egy. The final part of our experimentation serves as
a comparison of different ensembling strategies, jus-
tifying the design of our most effective architecture,
and comparing it to other tracking methods.

Evaluation setup Our experiments were con-
ducted on all 30 tracks of the TAP-Vid-DAVIS
dataset [11] with a resolution of 512×512 using the
first evaluation mode. This approach aligns with the
methodology described in MFT [38]. It is important
to stress that in the dataset, the tracks are annotated
only sparsely with more focus on the foreground ob-
jects rather than the static background.

Evaluation metrics In assessing the performance
of our approach, we employ three key metrics as de-
fined by the TAP-Vid benchmark. The Occlusion

Accuracy (OA) evaluates the accuracy of classifying
the points as occluded. We measure the quality of
the predicted positions, using average displacement
error, denoted as <δxavg. This metric calculates the
fraction of visible points with a positional error be-
low specific thresholds, averaged over thresholds of
1, 2, 4, 8, and 16 pixels. These accuracies for individ-
ual thresholds are denoted as < i with i representing
the threshold. Additionally, the Average Jaccard (AJ)
as defined in [11] index is used to collectively assess
both occlusion and position accuracy.

4.1. MFT Chaining

A key aspect of our analysis involves contrasting
the performance of RAFT, DKM, and RoMa within
the MFT framework against direct optical flow pre-
diction with the first frame serving as a reference,
and chaining of the optical flows computed on con-
secutive video frames. The results presented in Ta-
ble 1 clearly show that for each base method (RAFT,
DKM, RoMa), the MFT strategy consistently outper-
forms the other strategies in all metrics by a large
margin. These results underscore the effectiveness of
MFT in handling complex motion trajectories over
extended periods, surpassing the limitations of di-
rect prediction and simple chaining methods. A key
observation exemplified in Figure 2 is that RoMa is
substantially less prone to predict mismatches in the
background than RAFT.

The results in Table 1 also show that RoMa within
the MFT paradigm achieves arguably the best results
in position prediction, while RAFT outperforms all
other methods in the occlusion classification accu-
racy. This finding serves as a foundation for our en-
semble strategies in Subsec. 3.3. Due to the consis-
tently better performance of RoMa over DKM in the
evaluation benchmark in all, average Jaccard, aver-
age displacement error, and occlusion accuracy we
from now on focus our experiments on RoMa even if
DKM runs slightly faster.

4.2. RoMa Visibility

While RoMa demonstrates high accuracy in posi-
tion prediction, its capability in occlusion detection is
relatively limited in comparison to RAFT. However,
the quality of occlusion prediction is vital for scoring
the optical flows as described in Subsec. 3.1, and thus
for computing new flows. We hence conjecture that
if we only use the RoMa’s optical flow predictions
that are predicted as not occluded, we can achieve
even better tracking results. The results, as shown



(a) Reference frame (b) RAFT-based MFT Strategy.

(c) RoMa-based MFT Strategy. (d) DKM-based MFT Strategy.

(e) Direct matching between frames #0 and #140 using
RAFT.

(f) Direct matching between frames #0 and #140 using
RoMa.

(g) Combined RAFT and RoMa strategy. (h) Selective RoMa position prediction.

Figure 2: Visual comparison of selected dense tracking methods: (a) reference frame #0; (b)-(h) predicted
positions of points in frame #140. All blue points are invisible in frame #140; blue points in (b)-(h) thus
indicate false matches. Green points are visible both in frame #0 and frame #140. Red points highlight the
points on the body of the lioness. Different shades are used to identify different points. The sequence is
available at https://cmp.felk.cvut.cz/˜serycjon/MFT/visuals/ugsJtsO9w1A-00.00.
24.457-00.00.29.462_HD.mp4.

https://cmp.felk.cvut.cz/~serycjon/MFT/visuals/ugsJtsO9w1A-00.00.24.457-00.00.29.462_HD.mp4
https://cmp.felk.cvut.cz/~serycjon/MFT/visuals/ugsJtsO9w1A-00.00.24.457-00.00.29.462_HD.mp4


main metrics

base strategy AJ <δxavg OA <1 <2 <4 <8 <16

direct 38.4 50.8 65.6 29.0 44.1 54.6 60.4 65.7
RAFT chain 38.7 55.0 69.5 25.2 43.8 59.4 70.4 76.3

MFT 47.4 67.1 77.7 34.0 57.3 74.3 82.8 86.9
chain 27.3 63.5 48.2 36.4 56.2 69.4 76.0 79.6

DKM direct 34.0 60.7 52.8 37.0 54.5 65.3 70.9 76.0
MFT 47.8 72.0 70.2 43.0 65.8 79.0 84.5 87.8
direct 37.7 63.7 57.6 37.5 55.9 67.8 75.5 81.5

RoMa chain 40.3 63.1 60.7 36.8 55.3 68.1 75.5 79.8
MFT 48.8 72.7 71.7 43.0 65.5 79.2 85.5 90.1

Table 1: TAP-Vid DAVIS evaluation of different optical flow combination strategies. The MFT strategy
outperforms both simple chaining and direct matching for all base optical flow methods on all the metrics.

predicted <δxavg <1 <2 <4 <8 <16

occluded 47.4 18.7 32.7 52.0 62.6 71.1
visible 77.2 46.9 70.9 84.5 89.8 93.7
any 72.7 43.0 65.5 79.2 85.5 90.1

Table 2: TAP-Vid DAVIS evaluation of MFT-
RoMa separated by the occlusion prediction. Us-
ing only the points predicted as not occluded leads to
improved position accuracy on all error thresholds.

in Tab. 2, indicate a marked improvement in tracking
accuracy when measured only on points predicted as
non-occluded.

4.3. Ensembling Strategies

In the concluding part of our experimental analy-
sis, we compare various ensembling strategies within
the MFT framework, building on the insights from
the previous sections. The results, detailed in Ta-
ble 3, demonstrate the effectiveness of the ensemble
strategy.

RAFT-based MFT Strategy For comparison we
show the original MFT strategy, utilizing RAFT for
both position and occlusion predictions. This ap-
proach, while achieving the highest occlusion accu-
racy among all ensembling strategies tested, exhibits
suboptimal performance in position precision.

RoMa-based MFT Strategy Substituting RAFT
entirely with RoMa, we observed an improvement in
position prediction accuracy. However, this modifi-
cation led to a significant decrease in occlusion pre-

diction accuracy, highlighting the trade-offs between
these two aspects.

Combined RAFT and RoMa Strategy Our next
strategy involved a simple combination of RAFT and
RoMa: RAFT for occlusion prediction and RoMa for
position prediction. This hybrid approach resulted
in enhanced performance across all metrics, outper-
forming the aforementioned individual strategies.

Selective RoMa Position Prediction However,
further refinement was achieved by integrating find-
ings from Subsection 4.2. We found that RoMa’s
position predictions are more accurate for points it
identifies as visible. Therefore, we devised a strategy
where MFT-RoMa’s position predictions are used
only if the points are marked as visible; otherwise,
RAFT’s predictions are utilized. This selective strat-
egy led to improvements in both position predic-
tion accuracy and occlusion accuracy. We visually
compare this strategy with other two best-performing
strategies and MFT with RAFT in Figure 3.

Comparison with Point Trackers We observe
that our approach closely rivals or exceeds the per-
formance of established sparse point tracking meth-
ods like CoTracker and TAPIR in the average posi-
tion accuracy while achieving worse performance in
the occlusion prediction accuracy. It is noteworthy
that our method attains these results within a strictly
causal framework, contrasting with CoTracker and
TAPIR, which utilize attention-based temporal re-
finement strategies. Moreover, it is important to
highlight that, unlike our approach, CoTracker and
TAPIR are designed as sparse trackers.



MFT base main metrics visibility

position occlusion AJ <δxavg OA precision recall
(1) RAFT RAFT 47.4 67.1 77.7 78.0 91.5
(2) RoMa RoMa 48.8 72.7 71.7 74.5 85.3
(3) RoMa RAFT 50.2 72.7 77.7 78.0 91.5
(4) RAFT/RoMa RAFT 51.6 73.4 77.7 78.0 91.5

TAPIR 56.2 70.0 86.5
CoTracker 61.0 75.9 89.4

Table 3: TAP-Vid DAVIS evaluation of combinations of two trackers. We run MFT-RAFT and MFT-RoMa
independently in parallel, using the two outputs for the final position and occlusion prediction. RAFT-based
MFT (1) has good occlusion accuracy (OA), RoMa-based MFT (2) has good position accuracy <δxavg. Using
MFT-RAFT to predict occlusion and MFT-RoMa to predict position (3) achieves better AJ. The best results (4)
are achieved when the position is predicted by MFT-RoMa, but only when it predicts visible (see Tab. 2).

5. Conclusion

We have showcased the benefits of employing the
MFT framework over direct optical flow computa-
tion and optical flow chaining. We have also demon-
strated the flexibility of the MFT paradigm which
can be readily used together with different optical
flow computation methods. Without complex ar-
chitectural modifications and using simple ensemble
strategies, we were able to demonstrate position pre-
diction accuracy on the Tap-Vid dataset competing
with that of state-of-the-art sparse trackers that uti-
lize non-causal tracking refinement.

Limitations and Future Work Our current ap-
proach does not take into account the speed of the
baseline optical flow networks. The main limitation
is the need for two optical flow networks to operate
concurrently within the ensemble strategy. Explor-
ing co-training strategies that enable a single network
to deliver similar performance could be a viable so-
lution. A key task is to bridge the existing gap in
occlusion prediction accuracy between our method
and the state-of-the-art. We also put forward the need
for new datasets featuring dense annotations of point
tracks in both the foreground and background.
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(a) RAFT-based MFT Strategy

(b) RoMa-based MFT Strategy

(c) Combined RAFT and RoMa Strategy

Figure 3: Images show the first frames of two se-
lected TAP-Vid DAVIS sequences. Dots represent
ground-truth tracking points, with shades of green
showing the improvement in <δxavg achieved by the
Selective RoMa Position Prediction ensemble over
methods (a)-(c), shades of red show the converse.
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