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Abstract. We propose a method to transfer pose and
expression between face images. Given a source and
target face portrait, the model produces an output
image in which the pose and expression of the source
face image are transferred onto the target identity.
The architecture consists of two encoders and a map-
ping network that projects the two inputs into the la-
tent space of StyleGAN2, which finally generates the
output. The training is self-supervised from video se-
quences of many individuals. Manual labeling is not
required. Our model enables the synthesis of ran-
dom identities with controllable pose and expression.
Close-to-real-time performance is achieved.

1. Introduction

Animating facial portraits in a realistic and con-
trollable way has numerous applications in image
editing and interactive systems. For instance, a pho-
torealistic animation of an on-screen character per-
forming various human poses and expressions driven
by a video of another actor can enhance the user
experience in games or virtual reality applications.
Achieving this goal is challenging, as it requires rep-
resenting the face (e.g. modeling in 3D) in order to
control it and developing a method to map the desired
form of control back onto the face representation.

With the advent of generative models, it has be-
come increasingly easier to generate high-resolution
human faces that are virtually indistinguishable from
real images. StyleGAN2 [14] achieves the state-of-
the-art level of image generation with high quality
and diversity among GANs [11]. Although extensive
research has been conducted on editing images in the
latent space of StyleGANs, most studies have primar-
ily explored linear editing approaches. StyleGAN is
popular for latent space manipulation using learned
semantic directions, e.g. making a person smile, ag-
ing, change of gender or pose. However, the explo-
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Figure 1. Results of our method. Pose and expression
from the source image is transferred onto the identity of
the target image. The method generalizes to paintings, de-
spite being trained on videos of real people.

ration of non-linear editing methods and example-
based control of the synthesis remains relatively un-
explored.

This work presents a method that synthesizes a
new image of an individual by taking a source (driv-
ing) image and a target (identity) image as input, in-
corporating the pose and expression of the person in
the source image into the generated output from the
target image, as shown in Fig. 1.

The main idea of our method is to encode both im-
ages into pose/expression and identity embeddings.
The embeddings are then mapped into the latent
space of the pre-trained StyleGAN2 [14] decoder that
generates the final output. The model is trained from
a dataset of short video sequences each capturing a
single identity. The training is self-supervised and



does not require labeled data. We rely on neural
rendering in a one-shot setting without using a 3D
graphics model of the human face.

By using pre-trained components of our model,
we avoid the complicated training of a generative
model. Our results confirm high flexibility of the
StyleGAN2 model, which produces various poses
and facial expressions, and that the output can be
efficiently controlled by another face of a different
identity.

Our main contributions are: (1) Method for pose
and expression transfer with close to real-time infer-
ence. (2) A Generative model that allows the syn-
thesizing of random identities with controllable pose
and expression.

2. Related Work

Before deep learning methods, the problem of
expression transfer was often approached using
parametric models. The 3D Morphable Model
(3DMM) [5] was used in e.g., [26, 27].

More recently deep models have become promi-
nent. For instance, X2Face [33] demonstrates that
an encoder-decoder architecture with a large collec-
tion of video data can be trained to synthesize hu-
man faces conditioned by a source frame without any
parametric representation of the face or supervision.
Furthermore, the paper shows that the expression can
be driven not only by the source frame but also by au-
dio to some degree of accuracy. Similarly, [36] em-
ploys a GAN architecture with an additional embed-
ding network that maps facial images with estimated
facial landmarks into an embedding that controls the
generator. This allows for conditioning the generated
image only on facial landmarks.

The approach proposed in [32] enables the gen-
eration of a talking-head video from a single input
frame and a sequence of 3D keypoints, learned in
an unsupervised way, that represent the motions in
the video. By utilizing this keypoint representation,
the method can efficiently recreate video conference
calls. Moreover, the method allows for the extrac-
tion of 3D keypoints from a different video, enabling
cross-identity motion transfer.

Recently, Megaportraits [9] have achieved an im-
pressive level of cross-reenactment quality in one
shot. Their method utilizes an appearance encoder,
which encodes the source image into a 4D volumet-
ric tensor and a global latent vector, and a motion
encoder, which extracts motion features from both of

the input images. These features together with the
global latent vector predict two 3D warpings. The
first warping removes the source motion from the
volumetric features, and the second one imposes the
target motion. The features are processed by a 3D
generator network and together with the target mo-
tion are input into a 2D convolutional generator that
outputs the final image. Their architecture is com-
plex and is made up of many custom modules that
are not easily reproducible. Our model is much sim-
pler since it is composed of well-understood open-
source publicly available models. We rely on pre-
trained StyleGAN2 [14] to generate the final output
and pre-trained ReStyle image encoder [4] to project
real input images into the latent space.

Regarding image editing in the latent space of
GANs, paper [19] pointed out the arithmetic prop-
erties of the generator’s latent space. Since then, re-
searchers have extensively studied the editing possi-
bilities that can be done in this domain. Specifically
for StyleGAN, many works have been published re-
garding latent space exploration [12, 23, 3, 2, 18].
InterFaceGAN [23] shows that linear semantic di-
rections can be easily found in a supervised manner.
However, the latent directions are heavily entangled,
meaning that one learned latent direction will likely
influence other facial attributes as well. For exam-
ple, given a learned latent direction of a pose change,
when applied, the person might change expression,
hairstyle, or even identity. However, manipulating
real input images requires mapping them to the gen-
erator’s latent space.

The process of finding a latent code that can gen-
erate a given image is referred to as the image in-
version problem [7, 38, 30]. There are mainly two
approaches to image inversion. Either through di-
rect optimization of the latent code to produce the
specified image [2, 1, 21, 39] or through training an
encoder on a large collection of images [20, 4, 28].
Typically, direct optimization gives better results, but
encoders are much faster. In addition, the encoders
show a smoother behavior, producing more coherent
results on similar inputs [29].

Another reason why we chose to use an encoder
for the image inversion is that we require many train-
ing images to be inverted and direct optimization of
each training sample would not be computationally
feasible. We chose ReStyle [4], which uses an itera-
tive encoder to refine the initial estimate of the latent
code. This approach is a suitable fit for our purpose,



as it leverages smoother behavior over similar inputs
from encoders as well as better reconstruction quality
from iterative optimization. Currently, the encoders
supported in ReStyle are pSp (pixel2style2pixel) [20]
and e4e (encoder4editing) [28]. Although both en-
coders embed images into the extended latent space
W+, Tov et al. [28] argue that by designing an en-
coder that predicts codes in W+ which reside close to
W they can better balance the distortion-editability
trade-off. However, we chose to use ReStyle with a
pSp encoder in our network as the baseline method
with the e4e encoder had trouble preserving the tar-
get identity.

An approach similar in spirit to ours, in the sense
of using StyleGAN for expression transfer, is taken
by Yang et al. [35]. Nevertheless, they do not trans-
fer the pose, but the expression only. Moreover, their
method relies on optimization, which is much slower.
They report running times for a single image in min-
utes, while our method runs in fractions of seconds
and is thus more practical for generating videos.

3. Method

Our framework takes two face images as input, a
source (driving) face image, and a target (identity)
face image. The network produces an output image
where the pose and expression from the source face
image are transferred onto the target identity.

3.1. Architecture

Fig. 2 depicts the proposed architecture. The net-
work consists of a motion (pose+expression) encoder
Em, an identity encoder Ei, a mapping network M ,
and a generator network G. The encoder Ei embeds
the identity of the target face image. The encoder
Em embeds motion, the pose and expression of the
source face image. The mapping network then mixes
the two embeddings and projects the output into the
latent space of the pre-trained StyleGAN2 genera-
tor. This approach offers the advantage of generating
high-quality images through StyleGAN while avoid-
ing the intricate GAN training process. The network
architecture is inspired by [25].

Specifically, a source image s and a target image t
are aligned and resized to 256× 256 pixels and then
fed into their corresponding encoders, where they
are embedded in the extended latent space W+ of
18 × 512 dimensions. Embeddings zs for pose and
expression of source image s and zt for the identity of
target image t are then concatenated and transformed

through the mapping network into a latent code z
∈ W+ that is then used as an input for the generator
that finally produces an output image g. Formally,

gs→t = G

(
M

(
Em(s) ⊕ Ei(t)

))
,

where symbol ⊕ denotes concatenation.
ResNet-IR SE 50 has been shown to embed vari-

ous entities into the latent space of StyleGAN2 such
as cartoons [20], hair [25] and much more. There-
fore, we utilize this network as encoder Em. For the
encoder Ei, we use a pre-trained ReStyle with the
pSp configuration. For the mapping network M , we
employ a single fully connected linear layer. For the
generator, we use the pre-trained StyleGAN2 which
produces high-resolution images of 1024× 1024 px.

3.2. Training

We employ self-supervised training to optimize
the parameters of the encoder Em and the mapping
network M , while keeping the parameters of the gen-
erator G and the encoder Ei fixed. The training
is performed on an unlabeled dataset of short video
clips, each containing a single person.

During each iteration of the training procedure, we
randomly sample two pairs of frames (sA, tA) and
(sB , tB) from two video clips of identities A and B,
respectively. We then generate two images gsA→tA

where the source and target frames are of identity A
and gsA→tB where the source is of identity A and the
target is of identity B. We employ the following loss
functions:

Pixel-wise loss. It is Euclidean distance between the
source and generated image intensities

L2 = ∥sA − gsA→tA∥2. (1)

where sA is the source frame of identity A and
gsA→tA is a generated image using both inputs from
identity A.

Perceptual loss. LPIPS (Learned Perceptual Image
Patch Similarity) [37] was shown to correlate with
human perception of image similarity. In praticular,

LLPIPS = 1− ⟨P (sA), P (gsA→tA)⟩, (2)

where P is a perceptual feature extractor
(AlexNet) [16] that outputs unit-length normal-
ized features and ⟨., .⟩ denotes dot product.
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Figure 2. The architecture of the proposed model. The Motion encoder and Mapping network weights are trained, while
the Identity encoder and StyleGAN2 weights stay fixed during training.

Identity loss. To ensure that the generated image
preserves the identity of the target image, we employ
the pre-trained facial recognition model ArcFace [8].
We calculate it in a similar fashion to the previous
loss:

LID = 1− ⟨D(tB), D(gsA→tB )⟩, (3)

where D produces unit-length normalized embed-
dings of respective frames.

CosFace loss. Finally, we implement the CosFace
loss [31] that we use in a similar way to Megapor-
traits [9]. The purpose of the loss is to make the
embeddings of coherent pose and expressions sim-
ilar, while maintaining the embeddings of indepen-
dent pose and expressions uncorrelated. For this
loss, only motion descriptors embedded by Em, are
necessary. We calculate motion descriptors zA =
Em(sA), zB = Em(sB) of the inputs, and of the
outputs fed to the encoder zA→A = Em(gsA→tA),
zA→B = Em(gsA→tB ). We then arrange them into
positive pairs P that should align with each other:
P = (zA→A, zA), (zA→B, zA), and negative pairs:
N = (zA→A, zB), (zA→B, zB). These pairs are then
used to calculate the following cosine distance:

d(zi, zj) = a · (⟨zi, zj⟩ − b), (4)

where both a and b are hyperparameters. Finally,

Lcos=−
∑

(zk,zl)∈P

log
exp{d(zk, zl)}

exp{d(zk, zl)}+
∑

(zi,zj)∈N
exp{d(zi, zj)}

.

(5)

Furthermore, we used cropped versions of the L2

loss and the LLPIPS losses. The crop is the central

area of 188 × 188 pixels of the original 256 × 256
aligned image. The losses L2 crop and LLPIPS crop

are used exactly as their aforementioned counter-
parts. The cropped losses turned out to be important.
Otherwise, we observed the model struggled to trans-
fer the expression precisely, probably being disturbed
by the complex texture of hair and background.

The total loss which is used to train the network is
the weighted sum of the individual losses

L = wL2L2 + wLPIPSLLPIPS + wIDLID

+wcosLcos + wL2 cropL2 crop

+wLPIPS cropLLPIPS crop.

(6)

3.3. Dataset

For our goal, we need a dataset consisting of nu-
merous unique identities and a wide range of images
with varying poses and facial expressions for each
identity. To meet this requirement, it was necessary
to use video data despite a potential trade-off in im-
age quality.

We decided to use the VoxCeleb2 dataset [6]
which was collected originally for speaker recogni-
tion and verification. It has since been used for talk-
ing head synthesis, speech separation, and face gen-
eration. It contains over a million utterances from
6 112 identities, providing us with a vast array of
subjects to work with. The dataset is primarily com-
posed of celebrity interview videos, offering a broad
spectrum of poses and expressions to utilize. The
videos are categorized by identity and trimmed into
shorter utterances that range from 5 to 15 seconds
in duration. They have also already undergone pre-
processing that includes cropping the frames to the
bounding boxes around each speaker’s face. On



top of that, we use the official preprocessing script
provided by StyleGAN to normalize the images to
224× 224 pixels [13].

As the number of videos per individual differs, we
balanced it out by only using a maximum number of
videos per person. We extracted 10 frames at half-
second intervals from each video. Subsequently, we
eliminate images with extreme poses that would be
difficult to generate with StyleGAN. The final train-
ing set contains around 6k different identities, each
with around 10 images from 5 different video clips,
resulting in a little under 300k images. The dataset
was split into disjoint training-validation-test sets 80-
10-10 percent, respectively. No identity appears in
any of the splits simultaneously.

3.4. Implementation details

The model was trained for about a million steps
with a batch size of 8. The best model checkpoint
was selected based on the error statistics measuring
the expression transfer fidelity and identity preserva-
tion, see Sec. 4.3.

We used the ranger optimizer [34], which com-
bines the Rectified Adam algorithm and Look Ahead.
We set the learning rate to 1 · 10−5. For our model
with the best performance, we used the following hy-
perparameters for the losses: wL2 = 0, wLPIPS =
0.05, wID = 0.3, wcos = 0, wL2 crop = 2,
wLPIPS crop = 0.3. We set parameters a = 5 and
b = 0.2 in the CosFace loss.

4. Experiments

4.1. Comparison of methods

Baseline method. To the best of our knowledge,
we are not aware of any publicly available imple-
mentation of our problem. Therefore, we compare
the proposed method with a linear StyleGAN latent
space manipulation as the baseline method.

Given two frames A0 and A1 (sampled from the
same video) where the pose and expression of the
person differ, the edit vector is represented by the
difference between the latent codes corresponding to
the inverted frames. The pose and expression can
then be imposed on a different person in image B by
adding the edit vector to the latent code of image B.
Formally,

zA1→B = zB + α · (zA1 − zA0), (7)

where zB is the latent code of the target person, zA0

is the latent code of the person A with the initial pose

and expression and zA1 is the latent code of the same
person with a different pose and expression. Scalar α
represents the magnitude of the edit and the resulting
latent code zA1→B fed into StyleGAN generates the
output, ideally a person B with the pose and expres-
sion of A1. In our case, we always set α to one, to
get the same expression and pose.

However, this approach requires the initial pose
and facial expression in frame A0 to match the pose
and expression of the person in frame B. This is
a very strict requirement, as there will probably be
no frame in a video where the pose and expression
match perfectly.

Instead of searching for two frames that match
pose and expression the best, we utilize an arithmetic
property of the latent space. We flip each frame in a
video by the vertical axis and invert them along with
their non-flipped counterparts. Then we calculate the
mean latent code for all the frames. This results in a
frontal pose with an average expression across the
video, typically a neutral expression. We do this
for both videos, which provides us with the same
pose and a similar expression for the initial frames.
We then used the aforementioned method to transfer
pose and expression from one person to another. The
downside of this method is that it does not work with
single images, but requires a short video of each in-
dividual. Moreover, inverting all the frames within
the videos is required, which is computationally de-
manding.

We consider two versions of the baseline method.
Both invert all the images with ReStyle [4], but one
with the pSp encoder configuration [20] and the other
with the e4e configuration [28].

Variants of our method. Besides the default
model presented in Sec. 3 denoted as (Ours), we
tested the other two variants. (Ours-Gen) does not
have the StyleGAN generator fixed, but its weights
are optimized during the training of the entire model.
(Ours-Cos) is the model where the CosFace loss
is engaged during training. CosFace loss has zero
weight and the SyleGAN generator is fixed in the de-
fault model.

4.2. Qualitative evaluation

In Fig. 3 we present several examples of pose and
expression transfer between a variety of identities.
The pairs are challenging since the input frames dif-
fer in ethnicity, gender, and illumination. Another
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Figure 3. Pose and expression transfer results. The top row depicts the target (identity) input images, leftmost column
the source (driving) input images. The grid shows the transfer results. The identities are preserved column-wise, and the
poses and expressions are preserved row-wise.

challenge is the accessories that people wear such as
glasses or earrings.

The pose and expression are seen to be transferred
while still preserving the input identity. The model
learned to transfer pose, expression, and eye move-
ment. The network also correctly identifies that if
eyeglasses are present in the identity image, they are
preserved in the output image. Surprisingly, the net-
work is able to model eye movement even behind
glasses. However, the model is not perfect for pre-
serving hair or background.

In Fig. 4, we compare the results of the base-
line method with several variants of our proposed
method. The baseline method does not use the tar-
get image, but rather a frontal representation with an
average expression across the video of the identity,
as explained in Sec. 4.1. The figure shows that the
baseline methods have trouble preserving the iden-
tity of the target person and several visual artifacts
are present. Some expressions are transferred rel-
atively faithfully. However, it can happen that the
average expression in one video is not the same as
in the other, and then the expressions are not trans-

ferred correctly. This can be seen in the second and
last columns of the Fig. 4. Our best model represents
eye movement better than other variants while also
generating more realistic images.

Expression transfer to synthetic faces. Our
method allows for transferring pose and expression
onto a randomly generated identities via StyleGAN.
We sample a random latent code z from the Gaus-
sian distribution, which is then mapped by StyleGAN
mapping network to w ∈ W . To obtain a valid iden-
tity latent code for our network, we first generate an
image using StyleGAN with w and then invert it us-
ing ReStyle. This is due to the fact that ReStyle en-
codes the images into a specific subspace of Style-
GAN’s latent space and our model is trained to oper-
ate in this subspace. Feeding w directly into our map-
ping network M often results in certain artifacts. In
this way, we can efficiently generate images of ran-
dom identities with a specific pose and expressions
given an example.
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Figure 4. Pose and expression transfer comparison. The top two rows represent the input: source and target images. The
next row shows the results. The baseline methods, pSp and e4e inversion. The three variants of our method, Ours-Gen
with optimized generator weights, Ours-Cos with CosFace loss, and Ours as our best model.

4.3. Quantitative evaluation

We evaluate the proposed method on pose and
expression transfer fidelity, as well as on identity
preservation. We then compare the results with the
baseline methods and other variants of our method.
The evaluation is done on the test split of the Vox-
Celeb2 dataset [6] that contains 120 different identi-
ties. Our evaluation focuses on a cross-reenactment
scenario, i.e., the source and target images are from
different identities. In particular, for each video in
the test set, every frame is one by one taken as the
source (driving) image, and a single random frame
of another video is taken as the target image (of a
different identity) and fed into the model to generate
output videos.

For pose transfer evaluation, we use a pre-trained
CNN estimator [22]. The network predicts yaw,
pitch, and roll; however, we consider only yaw and
pitch since all the pre-processed and generated im-
ages have the same roll. The pose error is the mean
absolute error of yaw and pitch between the gener-

ated images and their corresponding source (driving)
images.

For the evaluation of identity preservation, we use
the ArcFace [8]. The ID error is the cosine similarity
between the generated and the target (identity) frame
descriptors.

To the best of our knowledge, there is no straight-
forward method for measuring expression transfer fi-
delity. In theory, the expression independent of iden-
tity and pose should be described by activation of Fa-
cial Action Units (FAU) [10]. However, using a re-
cent state-of-the-art FAU extractor [17] did not yield
meaningful results in our data. The reason is proba-
bly that only strong activations are detected and sub-
tle expression changes are not captured at all. There-
fore, we opted to utilize Facial Landmarks (FL). To
detect Facial Landmarks we utilize the Dlib library
[15] which predicts 68 landmarks on a human face.
We first calculate the aspect ratios of certain facial
features following [24]. Specifically, we calculate
the aspect ratios of both eyes, the mouth, and mea-



Method Pose(MAE)↓ FL(CORR)↑ ID(CSIM)↑
Base pSp 8.491 0.656 0.671
Base e4e 8.720 0.621 0.563
Ours Gen 8.325 0.556 0.760
Ours Cos 7.968 0.528 0.762

Ours 7.673 0.620 0.801

Table 1. Quantitative comparison of the baseline method
and variants of our method. Pose error, expression fidelity
(measured by facial landmarks), and identity preservation
are evaluated. Symbol ↑ indicates that larger is better and
↓ that smaller is better.

sure the movement of the eyebrows by calculating
the aspect ratio between the eyebrows and the eyes.
Instead of measuring expression fidelity between sin-
gle images, we calculate cross-correlation of aspect
ratios between (source and generated) videos, to be
insensitive to individual facial proportions. In par-
ticular, each aspect ratio in the source and generated
videos is calculated for all the frames of the videos.
This gives us two signals of the same length that
are cross-correlated. Finally, the cross-correlations
of all aspect ratios are averaged, giving us the final
FL statistic.

This is a proxy statistic, since it does not capture
eyeball movements and does not measure well asym-
metric facial expressions, but seems to correlate with
subjective quality of facial expression transfer.

Tab. 1 shows the quantitative comparison of the
baseline method and variants of our method on the
VoxCeleb2 test set. The baseline methods strug-
gle to preserve the identity of the generated person
and generate a correct pose, while they are good
or comparable in expression transfer fidelity. Our
best model achieves ArcFace cosine similarity of 0.8,
which is very good considering that the cosine sim-
ilarity between the original and inverted images via
ReStyle with pSp configuration is 0.83. Therefore,
our method achieves identity preservation close to
the maximum possible with ReStyle encoder.

Our method performs worse with the CosFace loss
function (Ours Cos). While the loss function appears
to improve image illumination, as reported by [9], it
significantly slowed training and hindered expression
and eye movement transfer. The variant with (Ours
Gen) optimized generator weights produces overall
inferior output compared to the default model, where
the generator is fixed. The generated images suffer
from unpleasant artifacts while also having a less re-
alistic color scheme. This is probably a consequence
of overfitting.

Computational demands. The speed of infer-
ence is very important in practical applications.
Our method needs to invert the identity image via
ReStyle, which takes approximately half a second on
a modern GPU. Then it can generate up to 20 images
per second with that identity, given all the images
are already aligned. On the other hand, the baseline
method requires the inversion of all the images from
the source video and target video but then can gen-
erate up to 50 images per second. Given two short
5-sec videos with 24 frames per second, which are
typical for the VoxCeleb2 dataset, our method gener-
ates the entire video in less than 6 secs, whereas the
baseline method would require a little over 2 mins.

5. Conclusions

We presented a method for transferring the pose
and expression of a source face image to a target
face image while preserving the identity of the tar-
get face. The proposed method is self-supervised and
does not require labeled data. We reviewed the exist-
ing methods and proposed a new one that is based on
the StyleGAN generator. We extensively evaluated
our method on pose and expression transfer fidelity
as well as on identity preservation. We compare our
method to the baseline that utilizes the arithmetic
property of StyleGANs latent space. We showed
that our model transfers pose, expression, and even
eye movement under challenging conditions such as
different ethnicity, gender, pose, or illumination be-
tween the source and target images. Our method can
be used to generate images of random identities with
controllable pose and facial expressions by coupling
our model with the StyleGAN generator. The infer-
ence runs in close to real-time; thus, it is practically
usable to generate videos having a driving video and
a single still image of a target face.

The limitation is that certain expressions are not
transferred faithfully. For instance, problematic are
fully closed eyes, which is probably due to the diffi-
culty of StyleGAN in producing such images. Face
images with eyes completely closed were probably
not often seen when StyleGAN was trained. The
remedy could be a fine-tuning of the generator on
problematic images and a certain regularization of
the loss function.

We will make the code and the trained model pub-
licly available.
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