
27th Computer Vision Winter Workshop
Terme Olimia, Slovenia, February 14–16, 2024

Weather-Condition Style Transfer Evaluation for Dataset Augmentation
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Abstract.
In this paper, we introduce a framework for evalu-

ating style transfer methods that simulate desired tar-
get weather conditions from source images, acquired
in fair weather. The resulting images can be used
for targeted augmentation of datasets geared toward
object detection. Our approach diverges from tradi-
tional measures that focus on human perception only,
and importantly, does not rely on annotated datasets.
Instead, we operate on statistical distribution of out-
comes of the inference process (in our case, object
detections).

The proposed evaluation measure effectively pe-
nalizes methods that preserve features and consis-
tencies in object detection, and awards those, which
generate challenging cases more similar to the target
style. This is counteracted by the requirements that
the generated images remain similar to the images
acquired in target weather conditions.

This shift enables a more relevant and computa-
tionally practical assessment of style transfer tech-
niques in the context of weather condition gener-
ation. By reducing the dependency on annotated
datasets, our methodology offers a more streamlined
and accessible approach to evaluation.

1. Introduction

In the rapidly evolving field of computer vision,
the enhancement and adaptation of datasets through
style transfer, particularly under varying weather
conditions, is of paramount importance [20]. The
research, presented in this paper, is primarily moti-
vated by the desire to improve the performance of
advanced driver assistance systems (ADAS) through
targeted learning of hard examples from challenging
weather conditions. Importantly, the method itself
does not directly enhance ADAS; rather, it provides

Figure 1: Successful style transfer mimicking real
rain’s impact on vehicle detection. Top: input im-
age; middle: simulated rainy image; bottom: style
reference (rainy weather). Vehicle detection using
YOLOv8 [11] shows significant performance drop
from top (clear) to middle (rainy) image.

a quantitative measure of quality of synthetic sam-
ples in context of ADAS tasks, which could poten-



tially be used to refine and improve already existing
algorithms. The collection of images under adverse
weather is often hindered by their rarity, seasonal
dependence, and increased risk to vehicles. Thus,
synthesizing weather conditions in existing images
recorded in fair weather, that not only look realistic
but also can correctly challenge or impair the perfor-
mance of computer vision algorithms, is a key point
of interest in the modern automotive industry. As-
sessing the quality of style-transfer model is a diffi-
cult task and still remains an open issue [23].

In this paper, we propose a novel evaluation mea-
sure that quantitatively shows how successful style
transfer is by visual quality of generated images
while keeping the statistics of object detection sim-
ilar to the targeted (conditional) style. Our proposed
method should help object detection by determining
if a dataset of images is challenging enough and at
the same time has similar core characteristics to tar-
get style, for it to be used to improve object detection
in specific weather conditions. The approach of this
paper is tailored towards ADAS applications. Ex-
ample result of successful transfer where detection is
hindered by the added style in the same way it would
be by the style of a rainy image is shown in Figure
1. Additionally, if we are in possession of annotated
fair weather images, then the style transfer preserves
the annotations since they show the same scene. This
significantly simplifies the process of obtaining ex-
amples difficult for object detection since we can an-
alyze and extract those examples and based on the
statistical difference of annotations and detections.

2. Related Work

We split our related work section into three parts:
in the first (i) we look into type of generative mod-
els we use in our paper, the second (ii) covers the
work on the most popular evaluation measures and
the third (iii) the practical computer vision applica-
tions we will focus on.

Generative models. Ever since the introduction
of generative adversarial networks (GANs) [6], the
idea of translating images from one domain to an-
other has been a keen topic of research. Early works
in this were done by Isola et al. in [9] where they
showed it was possible to preform image-to-image
(I2I) translation using conditional GANs. For evalu-
ation measures they used Amazon Mechanical Turk
(AMT) and “semantic interpretability“ [24] of the
generated images to see how well can an off-the-

shelf image semantic segmentation network such as
[15], segment generated images. Early research in
I2I didn’t consider unpaired translation, the issue
of not having image pairs from two domains, since
it focused on automatic segmentation, coloring and
label→image tasks. Amongst the first to solve this
problem, Park et al. introduced cycle consistency
to GANs [25], creating CycleGAN. Their methods
for evaluation are the same as in [9]. More recently,
work by Park et al. in [17] and Hu et al. [8] created
unpaired I2I translation based on contrastive learn-
ing, reaching current state-of-the-art performance in
style transfer tasks. In our tasks we look at weather
condition translation and first to create a bespoke net-
work for this are Li et al. [12]. They employed
attention and segmentation modules to the genera-
tor. More recently Piazzati et al. in [18], found that
using physics-informed network to guide the effects
of weather proved to be state-of-the-art in weather
translation.

Evaluation measures. The first, and one of the
most used, measures for quantitative score of GANs
is Inception Score (IS) [21]. It uses a deep net-
work Inception v3 [22] pre-trained on ImageNet [5]
to extract relevant features from generated images
and calculates the average KL-Divergence between
the conditional label distribution and generated sam-
ples distribution. It shows correlation with human
scoring on CIFAR-10 dataset. Barratt et al. in [1]
showed that IS has issues with both theory and use
in practice. More modern measure is Fréchet incep-
tion distance (FID), introduced by Heusel et al. in
[7]. Similar to IS, FID uses Inception v3 network
pre-trained on ImageNet, but now the generated and
real samples are embedded to tensors before calculat-
ing the statistical distance, in this case 2-Wasserstein,
between them. Chong et al. in [4] prove that both
IS and FID are functions of the generator and the
number of samples, therefore we can’t fairly com-
pare two generators and even the same generators
evaluated on different number of images. They pro-
pose a new measure of effectively unbiased FID and
IS called FID∞ and IS∞ respectfully. Besides the
bias issue FID also assumes a Gaussian distribution
of samples which is not necessarily true; to solve this,
Binkowski et al. [3] introduce kernel inception dis-
tance (KID) where the kernel can be customized to
accommodate different tensor distributions. Betzalel
et al. in [2] state that the same problems that IS has of
Inception v3 being trained on ImageNet are present



in FID as well, and suggest using CLIP [19] basis in-
stead of the Inception model. They also state that
evaluation measures in general might benefit from
multiple measures such as FID∞ + KID.

Applications. One of the practical applications of
computer vision is in the world of advanced driver
assistance systems (ADAS). Nidamanuri et al. in
[16] state that the camera sensor is useful for multiple
functions such as object detection, blind spot moni-
toring, parking assist, lane keeping and traffic sign
recognition, with moderate accuracy. Liu et al. [14]
state that classical object detectors often fail when
faced with adverse weather conditions.

Our research is similar to Li et al. [12] where they
employ a weather classifier trained on real weather
images, to check if images generated by their model
are good enough to fool the classifier into giving the
image a label of the target condition.

3. Methods

Our framework is comprised of multiple elements.
First is the ADAS algorithm (e.g. object detection)
that we wish to improve by additional learning on
target weather examples. The second component
is a trained generator of target weather conditions,
which takes non-annotated fair-weather image and
transforms it into target-weather image. The third
component is an image quality assessment measure,
which guarantees the similarity of generated images
to the real world target weather images. The fourth
and critical component of our proposed framework
is evaluation measure of performance degradation of
the chosen ADAS algorithm that does not rely on im-
age annotations.

3.1. Object detection with YOLOv8

Since we don’t have access to actual ADAS al-
gorithms used on vehicles, we believe that YOLOv8
as an example of a state-of-the-art object detector is
a good approximation. YOLOv8 is a deep neural
network [11], developed as an upgrade on YOLOv5
[10] architecture in both speed and performance. In
this paper we use it as a default object detector. It’s
trained on COCO Dataset [13] with 272 categories.
For our use case (simulation of ADAS), many of
these categories are not interesting, hence we filter all
results and look only for a few categories. In no par-
ticular order these are: car, truck, bus, train, person
and bicycle. COCO has additional categories associ-
ated with driving such as van and motorcycle, but we

treat these all these as cars in case of motorcycles and
truck for vans. These particular categories were cho-
sen based on the most common vehicles found in our
custom driving dataset. As detection result, YOLOv8
returns a bounding box and a label (category). We
use this to compare to the ground truth. Ground truth
was done by manually labeling and drawing bound-
ing boxes and object categories same ones as taken
in YOLO, on test set of 92 images from both dry and
rainy weather conditions.

3.2. Image quality assessment with FID

Despite its issues with bias, most generative mod-
els are evaluated using the FID measure for image
assessment. A few methods have been developed af-
ter FID, however it remains the most used measure
in practice. This is due to the fact that it’s rela-
tively easy to calculate and there are numerous im-
plementations. To calculate it we run inference on
a pre-trained Inception v3 model and calculate the
2-Wasserstein distance from the N × 2048 dimen-
sional vector we get as a result from the inference.
N is the number of images from each label (real or
generated). FID assumes a Gaussian distribution on
the feature vector with mean µ and covariance ma-
trix Σ. FID score is calculated as the square of the 2-
Wasserstein distance (1) between tensors X and Y :

FIDX,Y = ∥µX − µY ∥2+

+ tr
(
ΣX +ΣY − 2

√
ΣXΣY

)
. (1)

Since FID assumes Gaussian distribution, µx and
µY are the means of tensors X and Y , and ΣX

and ΣX their respective covariance matricies. FID
is known to be biased ([2] [4]), however it is the
most used measure of generative model quality, even
in tasks such as conditioned style-transfer ([8] [12]
[18]). Despite objectively better measures existing
such as FID∞ [4], KID [3] and CLIP [19], in this
paper we decided on using FID due to its ease of
implementation and popularity. We will discuss the
possible issues with this choice in section 4.

3.3. Quality of detection measure

To measure quality of detections without anno-
tated images, we rely on statistics of results from
YOLOv8, on the entire test set. The assump-
tion underpinning this approach is that statistically,
YOLOv8 detections should have similar distribution
shape to the actual annotations on the same driving
route, regardless of the weather. This statement will



be backed up in section 4.1. Detection is run on all
images included in the test: input image, conditional
style image and generated image. For consistency
with our use case we refer to these as “dry”, “rainy”
and “generated” (images generated from dry to have
the style of rainy), respectively. From detection re-
sults on an image we take two values, the horizon-
tal and vertical coordinate of the bounding box and
the size of the bounding box in pixels in both hor-
izontal and vertical directions. From these we cre-
ate 2D discrete histograms which, when computed
for the whole set of a single image style, show us
statistical feature that we want to emphasize during
translation. In our case this is object detection. We
can compare histograms using an adequate measure
like Bhattacharyya distance. Bhattacharyya distance
tells us how “far“ two discrete data distributions are
one to another. Before computing, all histograms
are normalized to a range [0, 1]. This makes our
method invariant to actual number of detected ob-
jects and focuses only on positions. Currently, this is
an advantage since we expect the number of vehicles
for example, to be different during data collection in
different weather conditions. However, with careful
data acquisition (ensuring that the streets are equally
busy) the absolute frequencies could be another fea-
ture to include. Computing the Bhattacharyya dis-
tance is quite straightforward, in this case as we fol-
low equation (2) where P and Q are discrete data
distributions and pi and qi are their respective bins:

dB(P,Q) = −ln

(
n∑

i=1

√
piqi

)
(2)

For computing equation (2) on 2D histograms, we
simply transform a n×m matrix into a 1× (n×m)
vector. This approach, along with equation (2), mea-
sures the effectiveness of YOLOv8 in object detec-
tion across various images. A requirement for using
this measure is that dry and rainy images need to con-
tain similar image content across the dataset, but for
tasks such as style-transfer this is fulfilled in most
cases.

3.4. Combining the measures

As a result of FID we get a single number that
should indicate the “visual distance“ between two
images consistent with human evaluation. With de-
tection this is more complicated and we propose a
method described in section 3.3.

We compute Bhattacharyya distances between

histograms for both position and size to get a sense
how close the distributions of detected objects are for
dry, rainy and generated images. Normalizing all of
the calculated values for both FID and Bhattacharyya
distance so the smallest is 0 and largest 1, and can
combine them into a weighted sum to give us a score
shown in equation (3):
s(X,Y ) = −α · FIDX,Y +

+ β · dB (Hsize(X), Hsize(Y ))+

+ γ · dB (Hposition(X), Hposition(Y )) (3)

where s(X,Y ) is the measure score between
a set of images X and Y , FID(X,Y ) is the
FID score between those two sets, Hsize(X),
Hsize(Y ) and Hposition(X), Hposition(Y ) are the
notations for histograms computed for detection
sizes and positions of detection for a set of im-
ages X and Y , dB(H(X), H(Y )) is the Bhat-
tacharyya distance between sets of histograms. Pa-
rameters α, β and γ are hyperparameter weights
(α, β, γ ≥ 0) for FID, dB (Hsize(X), Hsize(Y )) and
dB (Hposition(X), Hposition(Y ))) respectively, that
describe the contribution to the total measure score.

3.5. Dry-to-rainy translation: QS-Attn Model

In this paper, we utilized the query-selected atten-
tion (QS-Attn) model [8] for I2I translation tasks.
QS-Attn enhances contrastive learning [17] by se-
lectively focusing on significant anchor points within
images. This model employs an attention mechanism
that prioritizes important queries in the source do-
main, creating a condensed attention matrix. This
matrix is pivotal in routing features across both
source and target domains, ensuring that relational
structures from the source are retained in the trans-
lated images.

4. Experiments

4.1. Dataset and training

For our dataset, we recorded 1242 images on a
route in dry and the same amount in rainy weather.
This makes our dataset weakly-paired, meaning pairs
of images do not exist since the recording environ-
ment (the road) is dynamic, but images are still sim-
ilar enough to be considered “location pairs“. Ex-
amples of this are shown in Figure 2. Recording the
dataset like this, twice on the same route with the
camera fixed in the same place on the windscreen,
ties in with the discussion of weather the statistics
of detections are the same. These statistics are very



route specific and we choose a route that has main
streets with a good flow of traffic as well as resi-
dential areas with less active traffic and more passive
traffic such as parked vehicles to try and cover what
most vehicles see in day to day city driving. Of the
complete dataset, 1140 images are training images,
10 validation images and 92 test images. Images
in the dataset cover urban driving scenes in central
European cities, in dry conditions and rain such is
shown in Figure 2. All images are resized from orig-
inal 3840×2160 pixels resolution, to 400×400 pixels
to accommodate the model input and to make it pos-
sible to train the model on a single Nvidia RTX3090
GPU.

For our model, we used an official implementa-
tion1 of GAN described in section 3.5. Training hy-
perparameters are default, except for “QS Mode“ set
to global, “crop size“ and “load size“ hyperparam-
eters are set to 400 to accommodate hardware limi-
tations. Model was trained for 400 total epochs, of
which the first 200 are with the default learning rate
(“n epochs“ hyperparameter) and the latter 200 with
linear learning rate decay (“n epochs decay“ hyper-
parameter).

4.2. YOLOv8 detection on our data

To benchmark YOLOv8, we annotated our test
data with bounding boxes and labels for objects of
interest. Annotation statistics are shown in Table 1,
the numbers represent the number of bounding boxes
for that label in absolute value and as a percentage
of all labels. Results on 92 test images per weather
condition are shown in Table 2. Looking at normal-
ized histograms in Figure 3 of detections for both dry
and rainy conditions, we can get a sense how well
YOLOv8 does in a more practical sense. Since his-
tograms in Figure 3 and 4 are normalized to a range
[0, 1], the shape of the distribution is for now much
more relevant for us than the values at any particular
point. Figures 3 and 4 are the distributions we are
basing our evaluation on. We can see that they are
similar in shape. This results needs to be additionally
verified with more annotated images for both dry and
rainy conditions.

4.3. Evaluation procedure

Our evaluation relies on the fact that during train-
ing, model creates more and more realistic rainy im-

1https://github.com/sapphire497/
query-selected-attention

Figure 2: Sampled images from our weakly-paired
dataset depicting scenes of urban driving

Dry Rain
Car 364 (78.45%) 322 (82.11%)
Person 69 (14.78%) 28 (7.05%)
Bicycle 13 (2.8%) 17 (4.28%)
Bus 9 (1.94%) 10 (2.52%)
Truck 9 (1.94%) 20 (5.04%)

Table 1: Annotation results for our dataset

Dry Rain
Precision 0.734 0.377
Recall 0.492 0.153
F1 Score 0.589 0.218

Table 2: YOLOv8 benchmark results for our dataset

ages as epochs tend towards the final one. We can
sample the training weights at certain points during
training to obtain a sub-optimal model and run in-
ference with test image set to obtain intermediate re-
sults. We then follow method described in section

https://github.com/sapphire497/query-selected-attention
https://github.com/sapphire497/query-selected-attention


Figure 3: 2D histogram comparison of detections on
dry images.

Figure 4: 2D histogram of detections on rainy im-
ages.

3.4, and test our combined evaluation measure. One
thing we need to make sure is to correctly sample
results from dry and generated set. The reason for
this is, because of the nature of style-transfer tasks,
there is a possibility of high correlation between de-
tection scores from these dry and generated images
since they depict the exact same scene only in dif-
ferent weather. To get an accurate measure of per-
formance over different samples, we take every even
numbered image from the test set of dry samples
and odd numbered sample from the generated set, to

Figure 5: 2D histogram of samples taken on last
training epoch

make sure the results are correctly calculated. Rainy
images contain different scenes so sampling can be
done either way. From this we create histograms for
all sets of images: dry, rainy and generated. Example
of histograms from the last training epoch is shown
in Figure 5. Normalization to range [0, 1] is done and
finally we compute Bhattacharyya distance accord-
ing to eq. (2) between dry and generated, and dry
and rainy histograms. FID is then computed between
rainy and fake images to give us a FID score. We
note we used FID primarily for its ease of computa-
tion, implementations of other measures, such KID
and FID∞, are less common.

For our tests, following the described method, our
measure rewards generated samples that have a sim-
ilar (according to eq. (2)) histogram distribution to
rainy samples, and low FID score between rainy and
generated samples. For clarity, in our experiments
we compared dry to rainy and dry to generated sam-
ples to show that the measure for generated images
goes from being more similar to dry towards being
more similar to rainy. Theoretically the best score
a model can achieve is 2. This is because we need
to make sure all values are scaled to the same size,
therefore we normalize both FID and Bhattacharyya
distances to [0, 1]. Setting all of the weights in eq.
(3) to α, β, γ = 1 gives us a maximum score of 2.

4.4. Results

We sample the model at every 5th epoch and eval-
uate the results according to our method. We first
look at graphs for all influential measures over sam-
pled epochs separately and not normalized. In Figure
6, we can see that the measure for similarity of his-
tograms between dry and fake samples drifts quite
rapidly from values closer to dry vs. dry, towards dry



Figure 6: Bhattacharyya distance comparison for po-
sitional histograms over training epochs

vs. rainy quite rapidly at the beginning of the training
process.

Spikes in the Figure 6 are due to the random na-
ture of training generative models and we can inter-
pret it as follows: the model suddenly learns how to
represent a new feature from the rainy set such as
windscreen wipers found on training images, so sud-
denly on all generated images form a certain epoch
there are simulated wipers represented as a back line
across the screen. Example of this is in Figure 10.
These interfere with possible detections and make the
histogram of generated samples dissimilar to that of
dry samples. From the section 4.3 we know our mea-
sure has a theoretical best value so going over this is
not wanted, just as much as not reaching this value
in the first place. Spikes can tell us that something
drastically changed during training, and needs to be
visually examined. Windscreen wipers are actually a
valid distortion on our images, if the camera is placed
in a way that is occasionally covered with wipers and
we can use this epoch to obtain difficult training sam-
ples that simulate wipers if that is our goal.

Looking at size comparisons, things are more dif-
ficult to assess. Graph showing comparisons over
epochs is shown in Figure 7. Detection sizes are
noisy over epochs and general trend is difficult to see.
This is due to the fact that over different epochs im-
ages go through various phases of added artifacts and
effects by the model, making the detections that are
present, inconsistent.

Analyzing the graph of FID score over epochs in
Figure 8, we get a sense how does well does the
translation work. We can see that the score com-
paring dry and generated samples trends up towards
the value of dry vs. rainy and, more relevant for us,

Figure 7: Bhattacharyya distance comparison for
size histograms over training epochs

Figure 8: FID score over training epochs

the score comparing rainy and generated trends down
over epochs. This, to a certain degree, ensures us that
the style-transfer seems to be working correctly.

Now normalizing these values and summing them
according to equation (3), gives us our measure how
good the style transfer is. Measure is shown in Figure
9.

We also fitted a trend line using least squares to the
results to get a better trend estimate. We can see that
the measure value goes up with training epochs, reas-
suring us the model is doing style-transfer correctly
according to both FID (as proxy for human percep-
tion) and at the same time making the images chal-
lenging for an object detector in a similar direction to
that of a rainy image. Different weights would em-
phasize different aspects of style-transfer and there-
fore give us different looking graphs for a model, de-
pending on what component is most important for
any given task. Example image sampled at different
epochs where our measure shows higher values are
shown in Figure 10.



Figure 9: Our model evaluation measure over train-
ing epochs. Hyperparameters are set to values
α, β, γ = 1. s(X,Y ) represents the score between
two sets of images.

One important fact to mention is that all of the pre-
sented results were done on our test dataset that has
92 images from each weather condition. This means
that looking at raw values of the measure is not reli-
able enough since we can’t with certainty state that
the results of even Bhattacharyya distance are unbi-
ased, let alone FID. Therefore, for current results we
propose looking at only the trend is it rising or falling
and based on that determine is the model working in
the wanted “direction“.

5. Conclusion

This study developed a framework for evaluating
style transfer in weather-conditioned image gener-
ation, addressing the challenge of maintaining key
features for object detection while accurately sim-
ulating weather conditions. This has implications
for dataset augmentation in fields like ADAS. Fu-
ture goals include testing with a larger dataset, both
for training and evaluation, and further research on
the statistical consistency of the proposed measure.
Plans also include adapting this measure as a loss
function for training style transfer models for specific
computer vision tasks. Additionally, alternatives to
FID and other histogram distances for image similar-
ity will be explored.
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Figure 10: Example generated images by QS-Attn
[8] from the test dataset on epoch numbers 130, 230,
270, 360 (roughly corresponding to local maxima of
the proposed measure) and 400 (final epoch), in order
from top to bottom. In first three, an attempt to add
wipers is clearly visible.
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